Newer
Older
#!/usr/bin/env python
# encoding: utf-8
"""
This module manages creating figures for the Glance GUI.
Created by evas Nov 2011.
Copyright (c) 2011 University of Wisconsin SSEC. All rights reserved.
"""
# these first two lines must stay before the pylab import
import matplotlib
# Note: it's assumed that you've already set up this use previously
(no author)
committed
#matplotlib.use('Qt4Agg') # use the Qt Anti-Grain Geometry rendering engine
from pylab import *
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import logging
import numpy as np
import glance.data as dataobjects
import glance.figures as figures
from glance.gui_constants import *
LOG = logging.getLogger(__name__)
#temp_dict = {'blue': [(0.0, 0.75, 0.75), (0.11, 0.99955436720142599, 0.99955436720142599), (0.34000000000000002, 0.99810246679316883, 0.99810246679316883), (0.34999999999999998, 0.98545224541429477, 0.98545224541429477), (0.375, 0.94117647058823528, 0.94117647058823528), (0.64000000000000001, 0.51739405439595187, 0.51739405439595187), (0.65000000000000002, 0.5, 0.5), (0.66000000000000003, 0.5, 0.5), (0.89000000000000001, 0.5, 0.5), (0.91000000000000003, 0.5, 0.5), (1.0, 0.5, 0.5)], 'green': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.50098039215686274, 0.50098039215686274), (0.34000000000000002, 0.93235294117647061, 0.93235294117647061), (0.34999999999999998, 0.94803921568627447, 0.94803921568627447), (0.375, 1.0, 1.0), (0.64000000000000001, 1.0, 1.0), (0.65000000000000002, 0.97966594045025435, 0.97966594045025435), (0.66000000000000003, 0.96514161220043593, 0.96514161220043593), (0.89000000000000001, 0.53667392883079168, 0.53667392883079168), (0.91000000000000003, 0.50036310820624552, 0.50036310820624552), (1.0, 0.5, 0.5)], 'red': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.5, 0.5), (0.34000000000000002, 0.5, 0.5), (0.34999999999999998, 0.5, 0.5), (0.375, 0.54269449715370022, 0.54269449715370022), (0.64000000000000001, 0.96647691334598351, 0.96647691334598351), (0.65000000000000002, 0.98545224541429466, 0.98545224541429466), (0.66000000000000003, 0.99810246679316883, 0.99810246679316883), (0.89000000000000001, 0.99955436720142621, 0.99955436720142621), (0.91000000000000003, 0.9549910873440286, 0.9549910873440286), (1.0, 0.75, 0.75)]}
temp_dict = {'blue': [(0.0, 0.58333333333333326, 0.58333333333333326), (0.11, 0.91607248960190135, 0.91607248960190135), (0.125, 0.91666666666666663, 0.91666666666666663), (0.34000000000000002, 0.91413662239089188, 0.91413662239089188), (0.34999999999999998, 0.89726966055239299, 0.89726966055239299), (0.375, 0.83823529411764708, 0.83823529411764708), (0.64000000000000001, 0.27319207252793593, 0.27319207252793593), (0.65000000000000002, 0.25, 0.25), (0.66000000000000003, 0.25, 0.25), (0.89000000000000001, 0.25, 0.25), (0.91000000000000003, 0.25, 0.25), (1.0, 0.25, 0.25)], 'green': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25130718954248366, 0.25130718954248366), (0.34000000000000002, 0.82647058823529418, 0.82647058823529418), (0.34999999999999998, 0.84738562091503267, 0.84738562091503267), (0.375, 0.91666666666666663, 0.91666666666666663), (0.64000000000000001, 0.91666666666666663, 0.91666666666666663), (0.65000000000000002, 0.88955458726700576, 0.88955458726700576), (0.66000000000000003, 0.87018881626724787, 0.87018881626724787), (0.89000000000000001, 0.29889857177438889, 0.29889857177438889), (0.91000000000000003, 0.25048414427499405, 0.25048414427499405), (1.0, 0.25, 0.25)], 'red': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25, 0.25), (0.34000000000000002, 0.25, 0.25), (0.34999999999999998, 0.25, 0.25), (0.375, 0.30692599620493355, 0.30692599620493355), (0.64000000000000001, 0.87196921779464465, 0.87196921779464465), (0.65000000000000002, 0.89726966055239288, 0.89726966055239288), (0.66000000000000003, 0.91413662239089177, 0.91413662239089177), (0.89000000000000001, 0.91607248960190157, 0.91607248960190157), (0.91000000000000003, 0.85665478312537158, 0.85665478312537158), (1.0, 0.58333333333333326, 0.58333333333333326)]}
DESAT_MAP = matplotlib.colors.LinearSegmentedColormap('colormap', temp_dict, 1024)
# colormaps that are available in the GUI
temp_spectral = cm.spectral if hasattr(cm, 'spectral') else cm.Spectral # newer matplotlib changed the name of this color map
temp_rspectral = cm.spectral_r if hasattr(cm, 'spectral_r') else cm.Spectral_r
AVAILABLE_COLORMAPS = {
"Viridis": cm.viridis,
"Cividis": cm.cividis,
"Plasma": cm.plasma,
"Ocean": cm.ocean,
"Spectral Rainbow": temp_spectral,
"Spectral Rainbow, Reverse": temp_rspectral,
"Grayscale": cm.bone,
"Grayscale, Reverse": cm.bone_r,
# note: we expect other modules to reference the COLORMAP_NAMES
COLORMAP_NAMES = list(AVAILABLE_COLORMAPS.keys())
(no author)
committed
# whether or not the plot can be drawn on a map
CAN_BE_MAPPED = {
ORIGINAL_A : True,
ORIGINAL_B : True,
ABS_DIFF : True,
RAW_DIFF : True,
HISTOGRAM_A : False,
HISTOGRAM_B : False,
HISTOGRAM : False,
MISMATCH : True,
SCATTER : False,
Eva Schiffer
committed
D_SCATTER : False,
(no author)
committed
HEX_PLOT : False,
}
# which data sets the plot needs
NEEDED_DATA_PER_PLOT = \
{
ORIGINAL_A : {A_CONST, },
ORIGINAL_B : { B_CONST,},
ABS_DIFF : {A_CONST, B_CONST,},
RAW_DIFF : {A_CONST, B_CONST,},
HISTOGRAM_A : {A_CONST, },
HISTOGRAM_B : { B_CONST,},
HISTOGRAM : {A_CONST, B_CONST,},
MISMATCH : {A_CONST, B_CONST,},
SCATTER : {A_CONST, B_CONST,},
D_SCATTER : {A_CONST, B_CONST,},
HEX_PLOT : {A_CONST, B_CONST,},
(no author)
committed
}
Eva Schiffer
committed
class TooMuchDataForPlot(Exception):
"""
An exception to be used when there's too much data to practically provide a plot when requested
"""
def __init__(self, dataSize):
"""
create this exception, giving a message based on the file path
"""
self.message = str("Unable to create requested plot. The data size of " + str(dataSize)
+ " was too large for the requested plot type.")
def __str__(self):
return self.message
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
class GlanceGUIFigures (object) :
"""
This class handles creating figures for the glance gui.
(in future it may manage them more actively)
it includes:
self.dataModel - the GlanceGUIModel object that contains the main data
model for the GUI
self.errorHandlers - objects that want to be notified when there's a serious error
"""
def __init__ (self, dataModelToSave) :
"""
create a figure manager, hanging on to the data model, for use in creating figures
"""
self.dataModel = dataModelToSave
self.errorHandlers = [ ]
def registerErrorHandler (self, objectToRegister) :
"""
add the given object to our list of error handlers
"""
if objectToRegister not in self.errorHandlers :
self.errorHandlers.append(objectToRegister)
(no author)
committed
def _getVariableInformation (self, filePrefix, variableName=None, doCorrections=True) :
"""
Pull the name, data, and units for the variable currently selected in the given file prefix
"""
(no author)
committed
varNameToUse = variableName
if varNameToUse is None :
varNameToUse = self.dataModel.getVariableName(filePrefix) # get the currently selected variable
(no author)
committed
dataObject = self.dataModel.getVariableData(filePrefix, varNameToUse, doCorrections=doCorrections)
(no author)
committed
unitsText = self.dataModel.getUnitsText (filePrefix, varNameToUse)
if dataObject is not None :
dataObject.self_analysis()
(no author)
committed
return varNameToUse, dataObject, unitsText
def _getVariableInfoSmart (self, filePrefix, imageType) :
"""
if appropriate for the image type, get information on the variable, otherwise return None's
"""
varName, dataObject, unitsText = None, None, None
# only load the data if it will be needed for the plot
(no author)
committed
if ( self.dataModel.getShouldShowOriginalPlotsInSameRange() or
(no author)
committed
( filePrefix in NEEDED_DATA_PER_PLOT[imageType] ) ) :
shouldUseRGBVersion = self.dataModel.getDoPlotAsRGB(filePrefix) and ( (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) )
varName, dataObject, unitsText = self._getVariableInformation(filePrefix) if not shouldUseRGBVersion else self._makeRGBdata(filePrefix)
return varName, dataObject, unitsText
(no author)
committed
def _makeRGBdata (self, filePrefix) :
"""
build an RGB or RGBA version of the data
"""
# get the red, green, and blue data
canGetData = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [RED_VAR_NAME, GREEN_VAR_NAME, BLUE_VAR_NAME])
if not canGetData : # if the basic rgb data doesn't exist, stop now
(no author)
committed
_, rDataObj, _ = self._getVariableInformation(filePrefix, variableName=RED_VAR_NAME, doCorrections=False)
_, gDataObj, _ = self._getVariableInformation(filePrefix, variableName=GREEN_VAR_NAME, doCorrections=False)
_, bDataObj, _ = self._getVariableInformation(filePrefix, variableName=BLUE_VAR_NAME, doCorrections=False)
# if possible get alpha data
_ = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [ALPHA_VAR_NAME]) # we need to make sure the model loads the data, but it's optional
_, aDataObj, _ = self._getVariableInformation(filePrefix, variableName=ALPHA_VAR_NAME, doCorrections=False)
# build the finished rgb set
rawData = [rDataObj.data, gDataObj.data, bDataObj.data] if aDataObj is None else [rDataObj.data, gDataObj.data, bDataObj.data, aDataObj.data]
rawData = np.rot90(np.fliplr(np.transpose(np.array(rawData))))
# now that the data is in the right shape/orientation make the data object
newDataObj = dataobjects.DataObject(rawData, fillValue=rDataObj.fill_value) # TODO, need to fix the fill values if they differ
newDataObj.self_analysis()
# return varName, dataObject, unitsText
return "rgb data", newDataObj, ""
def _buildDiffInfoObjectSmart (self, imageType, dataObjectA, dataObjectB, varNameA, varNameB,
epsilon_value=None, epsilon_percent=None) :
"""
if appropriate for the image type, build the difference object, otherwise return None
this method may raise an IncompatableDataObjects exception if the two data objects it's given can't be compared
"""
diffObject = None
# only build the difference if we need to compare the data
(no author)
committed
if imageType in COMPARISON_IMAGES :
# check to see if our data is minimally compatable; this call may raise an IncompatableDataObjects exception
dataobjects.DiffInfoObject.verifyDataCompatability (dataObjectA, dataObjectB, varNameA, varNameB)
# compare our data
diffObject = dataobjects.DiffInfoObject(dataObjectA, dataObjectB,
epsilonValue=epsilon_value, epsilonPercent=epsilon_percent)
return diffObject
def _load_and_analyse_lonlat (self, listOfFilePrefixes=list({A_CONST, B_CONST,}), lonNames=None, latNames=None, ) :
(no author)
committed
"""
load information on the longitude and latitude,
(no author)
committed
if there are multiple file prefixes given:
find the shared range
analyse how different the navigation is between the files
(if there is a lon/lat epsilon defined and the difference is more than that, either stop with an error or log a warning)
lonNames and latNames should be dictionaries giving the names of the longitude and latitude variables indexed by the file prefixes
This method may raise an IncompatableDataObjects exception if multiple file prefixes are passed in the listOfFilePrefixes
and the longitude and latitudes for those files can not be compared.
(no author)
committed
"""
lonlatData = { }
extents = None
# this now explicitly only works for 1 or 2 data sets
if len(listOfFilePrefixes) > 2 or len(listOfFilePrefixes) <= 0 :
LOG.debug("Somehow you've gotten into a state where you're trying to analyze lonlat for a meaningless number of files.")
return { }, None, None
# load and process stuff for each file prefix
for filePrefix in listOfFilePrefixes:
(no author)
committed
# get information on the lon/lat from the current file
currentLonObj, currentLatObj = self._load_lonlat(filePrefix, lonNames[filePrefix], latNames[filePrefix])
(no author)
committed
currentLonObj.self_analysis()
currentLatObj.self_analysis()
(no author)
committed
# we can't use longitude and latitude that don't match in size
if currentLonObj.data.shape != currentLatObj.data.shape:
raise ValueError("Longitude and Latitude for file " + filePrefix + " are different shapes." +
"\nCannot match differently shaped navigation data.")
(no author)
committed
# add this data to the list of lonlat data
lonlatData[filePrefix] = [currentLonObj, currentLatObj]
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# now handle calculating the extents and double checking shapes
# if we only have one data set
if len(listOfFilePrefixes) == 1 :
filePrefix = listOfFilePrefixes[0]
lonObjTemp = lonlatData[filePrefix][0]
latObjTemp = lonlatData[filePrefix][1]
# get the extents
temp_good_mask = ~lonObjTemp.masks.ignore_mask & ~latObjTemp.masks.ignore_mask
extents = maps.get_extents(lonObjTemp.data, latObjTemp.data,
lon_good_mask=temp_good_mask,
lat_good_mask=temp_good_mask, )
# otherwise we should have two data sets
else :
firstPrefix = listOfFilePrefixes[0]
lonObjTemp1 = lonlatData[firstPrefix][0]
latObjTemp1 = lonlatData[firstPrefix][1]
secondPrefix = listOfFilePrefixes[1]
lonObjTemp2 = lonlatData[secondPrefix][0]
latObjTemp2 = lonlatData[secondPrefix][1]
# double check that these two sets are the same shape
if lonObjTemp1.data.shape != lonObjTemp2.data.shape :
raise ValueError("Navigation data for file " + firstPrefix +
" is a different shape than that for file " + secondPrefix + "." +
"\nCannot match differently shaped navigation data.")
temp_good_mask = ~lonObjTemp1.masks.ignore_mask & ~latObjTemp1.masks.ignore_mask
temp_good_mask_b = ~lonObjTemp2.masks.ignore_mask & ~latObjTemp2.masks.ignore_mask
extents = maps.get_extents(lonObjTemp1.data, latObjTemp1.data,
lon_good_mask=temp_good_mask, lat_good_mask=temp_good_mask,
longitude_data_b=lonObjTemp2.data, latitude_data_b=latObjTemp2.data,
lon_good_mask_b=temp_good_mask_b, lat_good_mask_b=temp_good_mask_b, )
(no author)
committed
# return longitude and latitude information and the shared ranges
(no author)
committed
def _load_lonlat (self, filePrefix, lonName, latName) :
"""
load the longitude and latitude information for the file
(no author)
committed
"""
(no author)
committed
_, lonObject, _ = self._getVariableInformation(filePrefix, lonName, doCorrections=False)
_, latObject, _ = self._getVariableInformation(filePrefix, latName, doCorrections=False)
# make sure we aren't processing lon or lat values that are outside the acceptable range
maps.clean_lon_and_lat(lonObject, latObject,)
(no author)
committed
(no author)
committed
def _find_common_lonlat (self, lonlatData, doUnion=False) :
"""
given lonlatData like that created by _load_and_analyse_lonlat
find a common set of longitude and latitude
If doUnion is True, create a set that contains valid
longitudes and latitudes in as many places as possible.
Navigation data will be chosen preferentially based on
the sorting order of the keys in lonlatData.
If doUnion is False, the intersection of the data will
be produced instead (using the first data set by key
order and masking by data placement in later sets).
"""
commonLon = None
commonLat = None
validMask = None
# look through each of the possible data sets
(no author)
committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
tempLonObj, tempLatObj = lonlatData[file_prefix]
if commonLon is None :
commonLon = tempLonObj.copy()
commonLat = tempLatObj.copy()
commonLon.self_analysis()
commonLat.self_analysis()
validMask = commonLon.masks.valid_mask & commonLat.masks.valid_mask
else :
tempLonObj.self_analysis()
tempLatObj.self_analysis()
if doUnion :
newValid = (tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & ~ validMask
commonLon.data[newValid] = tempLonObj.data[newValid]
commonLat.data[newValid] = tempLatObj.data[newValid]
validMask |= newValid
else:
newInvalid = ~(tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & validMask
commonLon.data[newInvalid] = commonLon.fill_value
commonLat.data[newInvalid] = commonLat.fill_value
validMask &= ~newInvalid
# since we changed the data, rebuild the internal analysis
commonLat.self_analysis(re_do_analysis=True)
commonLon.self_analysis(re_do_analysis=True)
LOG.debug("common lon/lat validMask.shape: " + str(validMask.shape))
LOG.debug("common lon/lat sum(validMask): " + str(sum(validMask)))
return commonLon, commonLat, validMask
def spawnPlot (self) :
"""
create a matplotlib plot using the current model information
this method may raise an IncompatableDataObjects exception if the a and b data
are completely incomparable
this method may also raise a ValueError if the data could not be plotted
for reasons not encompassed by an IncompatableDataObjects exception
"""
(no author)
committed
# retrieve some plotting settings
imageType = self.dataModel.getImageType()
dataForm = self.dataModel.getDataForm()
colorMapToUse = AVAILABLE_COLORMAPS[self.dataModel.getColormapName()]
LOG.info ("Preparing variable data for plotting...")
(no author)
committed
# load the variable data
(no author)
committed
aVarName, aDataObject, aUnitsText = self._getVariableInfoSmart(A_CONST, imageType)
bVarName, bDataObject, bUnitsText = self._getVariableInfoSmart(B_CONST, imageType)
(no author)
committed
# compare the variables
diffData = self._buildDiffInfoObjectSmart(imageType,
aDataObject, bDataObject,
aVarName, bVarName,
epsilon_value=self.dataModel.getEpsilon(),
epsilon_percent=self.dataModel.getEpsilonPercent())
(no author)
committed
# if we need to build a shared range, do that now
rangeInfo = None
if self.dataModel.getShouldShowOriginalPlotsInSameRange() and (aDataObject is not None) and (bDataObject is not None) :
(no author)
committed
rangeInfo = [min(aDataObject.get_min(), bDataObject.get_min()), max(aDataObject.get_max(), bDataObject.get_max())]
# if the user asked for a mapped plotting format and type of plot that is mapped
(no author)
committed
lonlatData = None
navExtents = None
in_proj = None
out_proj = None
(no author)
committed
lonlatWarnings = ""
if (dataForm == MAPPED_2D) and CAN_BE_MAPPED[imageType] :
(no author)
committed
# get the longitude and latitude information for the files, as needed
dataNeeded = list(NEEDED_DATA_PER_PLOT[imageType]) # this is naturally a set, use a list here
lonNames = { }
latNames = { }
for file_const in dataNeeded :
lonNames[file_const] = self.dataModel.getLongitudeName(file_const)
latNames[file_const] = self.dataModel.getLatitudeName (file_const)
lonlatData, navExtents = self._load_and_analyse_lonlat(listOfFilePrefixes=dataNeeded,
lonNames=lonNames, latNames=latNames)
(no author)
committed
# double check that lon/lat are compatible with the data
(no author)
committed
if (aDataObject is not None) and (A_CONST in dataNeeded) :
if lonlatData[A_CONST][0].data.shape != aDataObject.data.shape :
raise ValueError("Unable to use selected navigation variables for file " + A_CONST +
"\nbecause they differ in size from the selected data variable for that file.")
if (bDataObject is not None) and (B_CONST in dataNeeded) :
if lonlatData[B_CONST][0].data.shape != bDataObject.data.shape :
raise ValueError("Unable to use selected navigation variables for file " + B_CONST +
"\nbecause they differ in size from the selected data variable for that file.")
# get the cartopy projections
in_proj, out_proj = maps.create_cartopy_proj_objects(navExtents, )
(no author)
committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# do a rough comparison of the longitude and latitude
if (aDataObject is not None) and (bDataObject is not None) :
llEpsilon = self.dataModel.getLLEpsilon()
lonDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][0],
lonlatData[B_CONST][0],
epsilonValue=llEpsilon)
latDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][1],
lonlatData[B_CONST][1],
epsilonValue=llEpsilon)
validA = lonlatData[A_CONST][0].masks.valid_mask & lonlatData[A_CONST][1].masks.valid_mask
validB = lonlatData[B_CONST][0].masks.valid_mask & lonlatData[B_CONST][1].masks.valid_mask
if sum(validA ^ validB) > 0 :
lonlatWarnings += "Valid areas in the two files do not match.\n"
lonlatWarnings += ("File " + A_CONST + " contains " + str(sum(validA & ~ validB)) +
" points which are not valid in file " + B_CONST + ".\n")
lonlatWarnings += ("File " + B_CONST + " contains " + str(sum(validB & ~ validA)) +
" points which are not valid in file " + A_CONST + ".\n")
if sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 :
lonlatWarnings += (str(sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask)) +
" longitude points differed by more than the epsilon of " +
str(llEpsilon) + " between the two files.\n")
if sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 :
lonlatWarnings += (str(sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask)) +
" latitude points differed by more than the epsilon of " +
str(llEpsilon) + " between the two files.\n")
(no author)
committed
LOG.info("Spawning plot window: " + imageType)
plt.ion() # make sure interactive plotting is on
(no author)
committed
# create whichever type of plot was asked for
if (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) :
# sort out some values based on which of the data sets we're showing
data_object_to_use = aDataObject if (imageType == ORIGINAL_A) else bDataObject
var_name_to_use = aVarName if (imageType == ORIGINAL_A) else bVarName
(no author)
committed
file_char_to_use = A_CONST if (imageType == ORIGINAL_A) else B_CONST
units_text_to_use = aUnitsText if (imageType == ORIGINAL_A) else bUnitsText
oneD_color_to_use = 'b' if (imageType == ORIGINAL_A) else 'c'
(no author)
committed
plotAsRGB = self.dataModel.getDoPlotAsRGB(A_CONST if imageType == ORIGINAL_A else B_CONST)
# if the data doesn't exist, we can't make this plot
raise ValueError(NO_DATA_MESSAGE)
(no author)
committed
if dataForm == SIMPLE_2D :
# double check that our data is a shape we can handle for this type of plot
if len(data_object_to_use.data.shape) != 2 :
raise ValueError("Two dimensional data is required for this plot type. "
"The provided variable data is "
+ str(data_object_to_use.data.shape) + " shaped.")
(no author)
committed
if plotAsRGB :
figures.create_raw_image_plot(data_object_to_use.data, "RGB image in File " + file_char_to_use)
else :
tempFigure = figures.create_simple_figure(data_object_to_use.data, var_name_to_use + "\nin File " + file_char_to_use,
invalidMask=~data_object_to_use.masks.valid_mask, colorMap=colorMapToUse,
colorbarLimits=rangeInfo, units=units_text_to_use)
(no author)
committed
elif dataForm == MAPPED_2D :
(no author)
committed
tempLonObj = lonlatData[file_char_to_use][0]
tempLatObj = lonlatData[file_char_to_use][1]
tempValid = data_object_to_use.masks.valid_mask
tempValid &= tempLonObj.masks.valid_mask
tempValid &= tempLatObj.masks.valid_mask
tempFigure = figures.create_mapped_figure(data_object_to_use.data,
tempLatObj.data, tempLonObj.data,
(no author)
committed
var_name_to_use + "\nin File " + file_char_to_use,
invalidMask=~tempValid, colorMap=colorMapToUse,
units=units_text_to_use)
(no author)
committed
elif dataForm == ONLY_1D :
temp = [(data_object_to_use.data, ~data_object_to_use.masks.valid_mask, oneD_color_to_use, None, None, None)]
tempFigure = figures.create_line_plot_figure(temp, var_name_to_use + "\n in File " + file_char_to_use)
(no author)
committed
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif (imageType == HISTOGRAM_A) or (imageType == HISTOGRAM_B) :
# Note: histograms don't care about data format requested, they are histogram formatted
# select the things that are file A or B specific
(no author)
committed
file_desc_to_use = A_CONST if (imageType == HISTOGRAM_A) else B_CONST
var_name_to_use = aVarName if (imageType == HISTOGRAM_A) else bVarName
data_object_to_use = aDataObject if (imageType == HISTOGRAM_A) else bDataObject
units_text_to_use = aUnitsText if (imageType == HISTOGRAM_A) else bUnitsText
# if the data doesn't exist, we can't make this plot
raise ValueError(NO_DATA_MESSAGE)
# build the histogram
clean_data = data_object_to_use.data[data_object_to_use.masks.valid_mask]
# TODO, should the range option be added here?
tempFigure = figures.create_histogram(clean_data, DEFAULT_NUM_BINS, var_name_to_use + "\nin File " + file_desc_to_use,
"Value of data at a given point", "Number of points with a given value", units=units_text_to_use)
(no author)
committed
elif imageType in COMPARISON_IMAGES :
# if we're making the absolute or raw difference image, do that
(no author)
committed
if (imageType == ABS_DIFF) or (imageType == RAW_DIFF) :
# now choose between the raw and abs diff
dataToUse = diffData.diff_data_object.data
titlePrefix = "Value of (Data File B - Data File A)\nfor "
(no author)
committed
if imageType == ABS_DIFF :
dataToUse = np.abs(dataToUse)
titlePrefix = "Absolute value of difference\nin "
(no author)
committed
if dataForm == SIMPLE_2D :
tempFigure = figures.create_simple_figure(dataToUse, titlePrefix + aVarName,
invalidMask=~diffData.diff_data_object.masks.valid_mask,
colorMap=colorMapToUse, units=aUnitsText)
elif dataForm == MAPPED_2D :
(no author)
committed
tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData)
tempValid &= diffData.diff_data_object.masks.valid_mask
tempFigure = figures.create_mapped_figure(dataToUse,
tempLatObj.data, tempLonObj.data,
(no author)
committed
titlePrefix + aVarName,
invalidMask=~tempValid, colorMap=colorMapToUse,
units=aUnitsText)
(no author)
committed
elif dataForm == ONLY_1D :
tempTitle = titlePrefix + aVarName
if aVarName != bVarName :
tempTitle = tempTitle + " / " + bVarName
temp = [(dataToUse, ~diffData.diff_data_object.masks.valid_mask, 'm', None, None, None)]
tempFigure = figures.create_line_plot_figure(temp, tempTitle)
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif imageType == MISMATCH :
mismatchMask = diffData.diff_data_object.masks.mismatch_mask
(no author)
committed
(no author)
committed
if dataForm == SIMPLE_2D :
tempFigure = figures.create_simple_figure(aDataObject.data, "Areas of mismatch data\nin " + aVarName,
invalidMask=~aDataObject.masks.valid_mask, tagData=mismatchMask,
colorMap=figures.MEDIUM_GRAY_COLOR_MAP, units=aUnitsText)
elif dataForm == MAPPED_2D :
(no author)
committed
tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData, doUnion=True)
tempValid &= (aDataObject.masks.valid_mask | bDataObject.masks.valid_mask)
tempData = aDataObject.copy()
tempMask = bDataObject.masks.valid_mask & ~aDataObject.masks.valid_mask
tempData.data[tempMask] = bDataObject.data[tempMask]
tempFigure = figures.create_mapped_figure(tempData.data,
tempLatObj.data, tempLonObj.data,
(no author)
committed
"Areas of mismatch data\nin " + aVarName,
invalidMask=~tempValid,
tagData=mismatchMask,
colorMap=figures.MEDIUM_GRAY_COLOR_MAP,
units=aUnitsText)
(no author)
committed
elif dataForm == ONLY_1D :
temp = [(aDataObject.data, ~aDataObject.masks.valid_mask, 'k', None, mismatchMask, None)]
tempFigure = figures.create_line_plot_figure(temp, "Areas of mismatch data\nin " + aVarName)
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif imageType == HISTOGRAM :
(no author)
committed
# Note: histograms don't care about data format requested, they are histogram formatted
rawDiffDataClean = diffData.diff_data_object.data[diffData.diff_data_object.masks.valid_mask]
titleText = ("Difference in\n" + aVarName) if (aVarName == bVarName) else str( "Value of\n" + bVarName + " - " + aVarName )
(no author)
committed
# TODO, should the range option be added here?
tempFigure = figures.create_histogram(rawDiffDataClean, DEFAULT_NUM_BINS, titleText,
"Value of (B - A) at each data point", "Number of points with a given difference", units=aUnitsText)
Eva Schiffer
committed
elif (imageType == SCATTER) or (imageType == D_SCATTER) or (imageType == HEX_PLOT) :
(no author)
committed
# Note: scatter and hex plots don't care about data format requested, they're scatter or hex plots
tempCleanMask = aDataObject.masks.valid_mask & bDataObject.masks.valid_mask
aDataClean = aDataObject.data[tempCleanMask]
bDataClean = bDataObject.data[tempCleanMask]
(no author)
committed
if imageType == SCATTER :
cleanMismatchMask = diffData.diff_data_object.masks.mismatch_mask[tempCleanMask]
Eva Schiffer
committed
if figures.check_data_amount_for_scatter_plot(aDataClean.size) :
tempFigure = figures.create_scatter_plot(aDataClean, bDataClean,
"Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
badMask=cleanMismatchMask,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
else :
# this is too much data to make a scatter plot, warn the user
raise TooMuchDataForPlot(aDataClean.size)
Eva Schiffer
committed
elif imageType == D_SCATTER :
tempFigure = figures.create_density_scatter_plot(aDataClean, bDataClean,
"Density of Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
else:
Eva Schiffer
committed
if figures.check_data_amount_for_hex_plot(aDataClean.size) :
tempFigure = figures.create_hexbin_plot(aDataClean, bDataClean,
"Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
else :
# this is too much data to make a hex plot, warn the user
raise TooMuchDataForPlot(aDataClean.size)
plt.draw()
LOG.debug("Created figure: " + str(tempFigure))
(no author)
committed
if lonlatWarnings != "" :
raise ValueError(lonlatWarnings)