Newer
Older
#!/usr/bin/env python
# encoding: utf-8
"""
This module manages creating figures for the Glance GUI.
Created by evas Nov 2011.
Copyright (c) 2011 University of Wisconsin SSEC. All rights reserved.
"""
# these first two lines must stay before the pylab import
import matplotlib
# Note: it's assumed that you've already set up this use previously
(no author)
committed
#matplotlib.use('Qt4Agg') # use the Qt Anti-Grain Geometry rendering engine
from pylab import *
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import matplotlib.colors as colors
(no author)
committed
from mpl_toolkits.basemap import Basemap
import logging
import numpy as np
import glance.data as dataobjects
import glance.figures as figures
import glance.gui_model as model
from glance.gui_constants import *
(no author)
committed
from glance.plotcreatefns import select_projection
LOG = logging.getLogger(__name__)
#temp_dict = {'blue': [(0.0, 0.75, 0.75), (0.11, 0.99955436720142599, 0.99955436720142599), (0.34000000000000002, 0.99810246679316883, 0.99810246679316883), (0.34999999999999998, 0.98545224541429477, 0.98545224541429477), (0.375, 0.94117647058823528, 0.94117647058823528), (0.64000000000000001, 0.51739405439595187, 0.51739405439595187), (0.65000000000000002, 0.5, 0.5), (0.66000000000000003, 0.5, 0.5), (0.89000000000000001, 0.5, 0.5), (0.91000000000000003, 0.5, 0.5), (1.0, 0.5, 0.5)], 'green': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.50098039215686274, 0.50098039215686274), (0.34000000000000002, 0.93235294117647061, 0.93235294117647061), (0.34999999999999998, 0.94803921568627447, 0.94803921568627447), (0.375, 1.0, 1.0), (0.64000000000000001, 1.0, 1.0), (0.65000000000000002, 0.97966594045025435, 0.97966594045025435), (0.66000000000000003, 0.96514161220043593, 0.96514161220043593), (0.89000000000000001, 0.53667392883079168, 0.53667392883079168), (0.91000000000000003, 0.50036310820624552, 0.50036310820624552), (1.0, 0.5, 0.5)], 'red': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.5, 0.5), (0.34000000000000002, 0.5, 0.5), (0.34999999999999998, 0.5, 0.5), (0.375, 0.54269449715370022, 0.54269449715370022), (0.64000000000000001, 0.96647691334598351, 0.96647691334598351), (0.65000000000000002, 0.98545224541429466, 0.98545224541429466), (0.66000000000000003, 0.99810246679316883, 0.99810246679316883), (0.89000000000000001, 0.99955436720142621, 0.99955436720142621), (0.91000000000000003, 0.9549910873440286, 0.9549910873440286), (1.0, 0.75, 0.75)]}
temp_dict = {'blue': [(0.0, 0.58333333333333326, 0.58333333333333326), (0.11, 0.91607248960190135, 0.91607248960190135), (0.125, 0.91666666666666663, 0.91666666666666663), (0.34000000000000002, 0.91413662239089188, 0.91413662239089188), (0.34999999999999998, 0.89726966055239299, 0.89726966055239299), (0.375, 0.83823529411764708, 0.83823529411764708), (0.64000000000000001, 0.27319207252793593, 0.27319207252793593), (0.65000000000000002, 0.25, 0.25), (0.66000000000000003, 0.25, 0.25), (0.89000000000000001, 0.25, 0.25), (0.91000000000000003, 0.25, 0.25), (1.0, 0.25, 0.25)], 'green': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25130718954248366, 0.25130718954248366), (0.34000000000000002, 0.82647058823529418, 0.82647058823529418), (0.34999999999999998, 0.84738562091503267, 0.84738562091503267), (0.375, 0.91666666666666663, 0.91666666666666663), (0.64000000000000001, 0.91666666666666663, 0.91666666666666663), (0.65000000000000002, 0.88955458726700576, 0.88955458726700576), (0.66000000000000003, 0.87018881626724787, 0.87018881626724787), (0.89000000000000001, 0.29889857177438889, 0.29889857177438889), (0.91000000000000003, 0.25048414427499405, 0.25048414427499405), (1.0, 0.25, 0.25)], 'red': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25, 0.25), (0.34000000000000002, 0.25, 0.25), (0.34999999999999998, 0.25, 0.25), (0.375, 0.30692599620493355, 0.30692599620493355), (0.64000000000000001, 0.87196921779464465, 0.87196921779464465), (0.65000000000000002, 0.89726966055239288, 0.89726966055239288), (0.66000000000000003, 0.91413662239089177, 0.91413662239089177), (0.89000000000000001, 0.91607248960190157, 0.91607248960190157), (0.91000000000000003, 0.85665478312537158, 0.85665478312537158), (1.0, 0.58333333333333326, 0.58333333333333326)]}
DESAT_MAP = matplotlib.colors.LinearSegmentedColormap('colormap', temp_dict, 1024)
# colormaps that are available in the GUI
(no author)
committed
# if this changes the list of colormap names in the constants module needs to be kept up
temp_spectral = cm.spectral if hasattr(cm, 'spectral') else cm.Spectral # newer matplotlib changed the name of this color map
AVAILABLE_COLORMAPS = {
CM_RAINBOW: cm.jet,
CM_RAINBOW_REV: cm.jet_r,
CM_RAINBOW_DESAT: DESAT_MAP,
CM_GRAY: cm.bone,
CM_GRAY_REV: cm.bone_r,
CM_SPECTRAL: temp_spectral,
}
(no author)
committed
# whether or not the plot can be drawn on a map
CAN_BE_MAPPED = {
ORIGINAL_A : True,
ORIGINAL_B : True,
ABS_DIFF : True,
RAW_DIFF : True,
HISTOGRAM_A : False,
HISTOGRAM_B : False,
HISTOGRAM : False,
MISMATCH : True,
SCATTER : False,
Eva Schiffer
committed
D_SCATTER : False,
(no author)
committed
HEX_PLOT : False,
}
# which data sets the plot needs
NEEDED_DATA_PER_PLOT = \
{
ORIGINAL_A : set([A_CONST]),
ORIGINAL_B : set([ B_CONST]),
ABS_DIFF : set([A_CONST, B_CONST]),
RAW_DIFF : set([A_CONST, B_CONST]),
HISTOGRAM_A : set([A_CONST]),
HISTOGRAM_B : set([ B_CONST]),
HISTOGRAM : set([A_CONST, B_CONST]),
MISMATCH : set([A_CONST, B_CONST]),
SCATTER : set([A_CONST, B_CONST]),
Eva Schiffer
committed
D_SCATTER : set([A_CONST, B_CONST]),
(no author)
committed
HEX_PLOT : set([A_CONST, B_CONST]),
}
class GlanceGUIFigures (object) :
"""
This class handles creating figures for the glance gui.
(in future it may manage them more actively)
it includes:
self.dataModel - the GlanceGUIModel object that contains the main data
model for the GUI
self.errorHandlers - objects that want to be notified when there's a serious error
"""
def __init__ (self, dataModelToSave) :
"""
create a figure manager, hanging on to the data model, for use in creating figures
"""
self.dataModel = dataModelToSave
self.errorHandlers = [ ]
def registerErrorHandler (self, objectToRegister) :
"""
add the given object to our list of error handlers
"""
if objectToRegister not in self.errorHandlers :
self.errorHandlers.append(objectToRegister)
(no author)
committed
def _getVariableInformation (self, filePrefix, variableName=None, doCorrections=True) :
"""
Pull the name, data, and units for the variable currently selected in the given file prefix
"""
(no author)
committed
varNameToUse = variableName
if varNameToUse is None :
varNameToUse = self.dataModel.getVariableName(filePrefix) # get the currently selected variable
(no author)
committed
dataObject = self.dataModel.getVariableData(filePrefix, varNameToUse, doCorrections=doCorrections)
(no author)
committed
unitsText = self.dataModel.getUnitsText (filePrefix, varNameToUse)
if dataObject is not None :
dataObject.self_analysis()
(no author)
committed
return varNameToUse, dataObject, unitsText
def _getVariableInfoSmart (self, filePrefix, imageType) :
"""
if appropriate for the image type, get information on the variable, otherwise return None's
"""
varName, dataObject, unitsText = None, None, None
# only load the data if it will be needed for the plot
(no author)
committed
if ( self.dataModel.getShouldShowOriginalPlotsInSameRange() or
(no author)
committed
( filePrefix in NEEDED_DATA_PER_PLOT[imageType] ) ) :
shouldUseRGBVersion = self.dataModel.getDoPlotAsRGB(filePrefix) and ( (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) )
varName, dataObject, unitsText = self._getVariableInformation(filePrefix) if not shouldUseRGBVersion else self._makeRGBdata(filePrefix)
return varName, dataObject, unitsText
(no author)
committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def _makeRGBdata (self, filePrefix) :
"""
build an RGB or RGBA version of the data
"""
# get the red, green, and blue data
canGetData = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [RED_VAR_NAME, GREEN_VAR_NAME, BLUE_VAR_NAME])
if not canGetData : # if the basic rgb data doesn't exist, stop now
"", None, ""
_, rDataObj, _ = self._getVariableInformation(filePrefix, variableName=RED_VAR_NAME, doCorrections=False)
_, gDataObj, _ = self._getVariableInformation(filePrefix, variableName=GREEN_VAR_NAME, doCorrections=False)
_, bDataObj, _ = self._getVariableInformation(filePrefix, variableName=BLUE_VAR_NAME, doCorrections=False)
# if possible get alpha data
_ = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [ALPHA_VAR_NAME]) # we need to make sure the model loads the data, but it's optional
_, aDataObj, _ = self._getVariableInformation(filePrefix, variableName=ALPHA_VAR_NAME, doCorrections=False)
# build the finished rgb set
rawData = [rDataObj.data, gDataObj.data, bDataObj.data] if aDataObj is None else [rDataObj.data, gDataObj.data, bDataObj.data, aDataObj.data]
rawData = np.rot90(np.fliplr(np.transpose(np.array(rawData))))
# now that the data is in the right shape/orientation make the data object
newDataObj = dataobjects.DataObject(rawData, fillValue=rDataObj.fill_value) # TODO, need to fix the fill values if they differ
newDataObj.self_analysis()
# return varName, dataObject, unitsText
return "rgb data", newDataObj, ""
def _buildDiffInfoObjectSmart (self, imageType, dataObjectA, dataObjectB, varNameA, varNameB,
epsilon_value=None, epsilon_percent=None) :
"""
if appropriate for the image type, build the difference object, otherwise return None
this method may rase an IncompatableDataObjects exception if the two data objects it's given can't be compared
"""
diffObject = None
# only build the difference if we need to compare the data
(no author)
committed
if imageType in COMPARISON_IMAGES :
# check to see if our data is minimally compatable; this call may raise an IncompatableDataObjects exception
dataobjects.DiffInfoObject.verifyDataCompatability (dataObjectA, dataObjectB, varNameA, varNameB)
# compare our data
diffObject = dataobjects.DiffInfoObject(dataObjectA, dataObjectB,
epsilonValue=epsilon_value, epsilonPercent=epsilon_percent)
return diffObject
(no author)
committed
def _load_and_analyse_lonlat (self, listOfFilePrefixes=[A_CONST, B_CONST], lonNames=None, latNames=None, stopIfComparisonFails=False) :
(no author)
committed
"""
load information on the longidue and latitude,
if there are multiple file prefixes given:
find the shared range
analyse how different the navigation is between the files
(if there is a lon/lat epsilon defined and the difference is more than that, either stop with an error or log a warning)
lonNames and latNames should be dictionaries giving the names of the longitude and latitude variables indexed by the file prefixes
This method may raise an IncompatableDataObjects exception if multiple file prefixes are passed in the listOfFilePrefixes
and the longitude and latidues for those files can not be compared.
"""
lonlatData = { }
lonRange = None
latRange = None
# load and compare stuff for each file prefix
for filePrefix in listOfFilePrefixes :
# get information on the lon/lat from the current file
currentLonObj, currentLatObj, currentLonRange, currentLatRange = self._load_lonlat(filePrefix, lonNames[filePrefix], latNames[filePrefix])
(no author)
committed
currentLonObj.self_analysis()
currentLatObj.self_analysis()
(no author)
committed
# expand our lon/lat ranges if we need to
if lonRange is None :
lonRange = currentLonRange
else :
lonRange[0] = min(currentLonRange[0], lonRange[0])
lonRange[1] = max(currentLonRange[1], lonRange[1])
if latRange is None:
latRange = currentLatRange
else :
latRange[0] = min(currentLatRange[0], latRange[0])
latRange[1] = max(currentLatRange[1], latRange[1])
(no author)
committed
# we can't use longitude and latitude that don't match in size
if currentLonObj.data.shape != currentLatObj.data.shape :
raise ValueError ("Longitude and Latitude for file " + filePrefix + " are different shapes." +
"\nCannot match differently shaped navigation data.")
(no author)
committed
# compare this file to whatever other data we have
for filePrefixToCompare in lonlatData.keys() :
lonToCompare, latToCompare = lonlatData[filePrefixToCompare]
(no author)
committed
# make sure the files are the same shape
if (currentLonObj.data.shape != lonToCompare.data.shape) :
raise ValueError ("Navigation data for file " + filePrefix +
" is a different shape than that for file " + filePrefixToCompare + "." +
"\nCannot match differently shaped navigation data.")
(no author)
committed
# add this data to the list of lonlat data
lonlatData[filePrefix] = [currentLonObj, currentLatObj]
# return longitude and latitude information and the shared ranges
return lonlatData, lonRange, latRange
def _load_lonlat (self, filePrefix, lonName, latName) :
"""
load the longitude and latitude information for the file and determine the ranges
present in both
"""
(no author)
committed
_, lonObject, _ = self._getVariableInformation(filePrefix, lonName, doCorrections=False)
_, latObject, _ = self._getVariableInformation(filePrefix, latName, doCorrections=False)
(no author)
committed
lonRange = [lonObject.get_min(), lonObject.get_max()]
latRange = [latObject.get_min(), latObject.get_max()]
return lonObject, latObject, lonRange, latRange
(no author)
committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def _find_common_lonlat (self, lonlatData, doUnion=False) :
"""
given lonlatData like that created by _load_and_analyse_lonlat
find a common set of longitude and latitude
If doUnion is True, create a set that contains valid
longitudes and latitudes in as many places as possible.
Navigation data will be chosen preferentially based on
the sorting order of the keys in lonlatData.
If doUnion is False, the intersection of the data will
be produced instead (using the first data set by key
order and masking by data placement in later sets).
"""
commonLon = None
commonLat = None
validMask = None
# look through each of the possible data sets
for file_prefix in sorted(lonlatData.keys()) :
tempLonObj, tempLatObj = lonlatData[file_prefix]
if commonLon is None :
commonLon = tempLonObj.copy()
commonLat = tempLatObj.copy()
commonLon.self_analysis()
commonLat.self_analysis()
validMask = commonLon.masks.valid_mask & commonLat.masks.valid_mask
else :
tempLonObj.self_analysis()
tempLatObj.self_analysis()
if doUnion :
newValid = (tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & ~ validMask
commonLon.data[newValid] = tempLonObj.data[newValid]
commonLat.data[newValid] = tempLatObj.data[newValid]
validMask |= newValid
else:
newInvalid = ~(tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & validMask
commonLon.data[newInvalid] = commonLon.fill_value
commonLat.data[newInvalid] = commonLat.fill_value
validMask &= ~newInvalid
# since we changed the data, rebuild the internal analysis
commonLat.self_analysis(re_do_analysis=True)
commonLon.self_analysis(re_do_analysis=True)
LOG.debug("common lon/lat validMask.shape: " + str(validMask.shape))
LOG.debug("common lon/lat sum(validMask): " + str(sum(validMask)))
return commonLon, commonLat, validMask
def spawnPlot (self) :
"""
create a matplotlib plot using the current model information
this method may raise an IncompatableDataObjects exception if the a and b data
are completely incomparable
this method may also raise a ValueError if the data could not be plotted
for reasons not encompassed by an IncompatableDataObjects exception
"""
(no author)
committed
# retrieve some plotting settings
imageType = self.dataModel.getImageType()
dataForm = self.dataModel.getDataForm()
colorMapToUse = AVAILABLE_COLORMAPS[self.dataModel.getColormapName()]
LOG.info ("Preparing variable data for plotting...")
(no author)
committed
# load the variable data
(no author)
committed
aVarName, aDataObject, aUnitsText = self._getVariableInfoSmart(A_CONST, imageType)
bVarName, bDataObject, bUnitsText = self._getVariableInfoSmart(B_CONST, imageType)
(no author)
committed
# compare the variables
diffData = self._buildDiffInfoObjectSmart(imageType,
aDataObject, bDataObject,
aVarName, bVarName,
epsilon_value=self.dataModel.getEpsilon(),
epsilon_percent=self.dataModel.getEpsilonPercent())
(no author)
committed
# if we need to build a shared range, do that now
rangeInfo = None
if (self.dataModel.getShouldShowOriginalPlotsInSameRange() and (aDataObject is not None) and (bDataObject is not None)) :
rangeInfo = [min(aDataObject.get_min(), bDataObject.get_min()), max(aDataObject.get_max(), bDataObject.get_max())]
# if the user asked for a mapped plotting format and type of plot that is mapped
(no author)
committed
lonlatData = None
basemapObject = None
lonlatWarnings = ""
if ((dataForm == MAPPED_2D) and CAN_BE_MAPPED[imageType]) :
# get the longitude and latitude information for the files, as needed
dataNeeded = list(NEEDED_DATA_PER_PLOT[imageType]) # this is naturally a set, use a list here
lonNames = { }
latNames = { }
for file_const in dataNeeded :
lonNames[file_const] = self.dataModel.getLongitudeName(file_const)
latNames[file_const] = self.dataModel.getLatitudeName (file_const)
lonlatData, lonRange, latRange = self._load_and_analyse_lonlat(listOfFilePrefixes=dataNeeded,
(no author)
committed
lonNames=lonNames, latNames=latNames)
# double check that lon/lat are compatable with the data
(no author)
committed
if (aDataObject is not None) and (A_CONST in dataNeeded) :
if lonlatData[A_CONST][0].data.shape != aDataObject.data.shape :
raise ValueError("Unable to use selected navigation variables for file " + A_CONST +
"\nbecause they differ in size from the selected data variable for that file.")
if (bDataObject is not None) and (B_CONST in dataNeeded) :
if lonlatData[B_CONST][0].data.shape != bDataObject.data.shape :
raise ValueError("Unable to use selected navigation variables for file " + B_CONST +
"\nbecause they differ in size from the selected data variable for that file.")
# FUTURE if there were ever more data sets, they'd need to be checked individually or make this more general?
(no author)
committed
(no author)
committed
# build basemap and axes,
# FUTURE, don't hard code so much of this stuff, let the projection and possibly others be selected
# FUTURE, some of this is in graphics.py, but needs to be refactored so I can call it in a different way
# FUTURE (may go with the axis finding changes from Graeme)
boundingAxes = [lonRange[0], lonRange[1], latRange[0], latRange[1]]
projToUse = select_projection(boundingAxes)
LOG.debug("Selecting projection: " + projToUse)
midLat = (latRange[0] + latRange[1]) / 2.0 # this will fail horribly where we cross discontinious lines
midLon = (lonRange[0] + lonRange[1]) / 2.0 # this will fail horribly where we cross discontinious lines
if projToUse is 'ortho' :
basemapObject = Basemap(lat_0=midLat, lon_0=midLon, resolution='i', area_thresh=10000., projection=projToUse)
else :
basemapObject = Basemap(llcrnrlon=lonRange[0], urcrnrlon=lonRange[1],
llcrnrlat=latRange[0], urcrnrlat=latRange[1],
lat_1=midLat, lon_0=midLon,
resolution='i', area_thresh=10000., projection=projToUse)
(no author)
committed
(no author)
committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# do a rough comparison of the longitude and latitude
if (aDataObject is not None) and (bDataObject is not None) :
llEpsilon = self.dataModel.getLLEpsilon()
lonDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][0],
lonlatData[B_CONST][0],
epsilonValue=llEpsilon)
latDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][1],
lonlatData[B_CONST][1],
epsilonValue=llEpsilon)
validA = lonlatData[A_CONST][0].masks.valid_mask & lonlatData[A_CONST][1].masks.valid_mask
validB = lonlatData[B_CONST][0].masks.valid_mask & lonlatData[B_CONST][1].masks.valid_mask
if sum(validA ^ validB) > 0 :
lonlatWarnings += "Valid areas in the two files do not match.\n"
lonlatWarnings += ("File " + A_CONST + " contains " + str(sum(validA & ~ validB)) +
" points which are not valid in file " + B_CONST + ".\n")
lonlatWarnings += ("File " + B_CONST + " contains " + str(sum(validB & ~ validA)) +
" points which are not valid in file " + A_CONST + ".\n")
if sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 :
lonlatWarnings += (str(sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask)) +
" longitude points differed by more than the epsilon of " +
str(llEpsilon) + " between the two files.\n")
if sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 :
lonlatWarnings += (str(sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask)) +
" latitude points differed by more than the epsilon of " +
str(llEpsilon) + " between the two files.\n")
(no author)
committed
LOG.info("Spawning plot window: " + imageType)
plt.ion() # make sure interactive plotting is on
(no author)
committed
# create whichever type of plot was asked for
if (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) :
# sort out some values based on which of the data sets we're showing
data_object_to_use = aDataObject if (imageType == ORIGINAL_A) else bDataObject
var_name_to_use = aVarName if (imageType == ORIGINAL_A) else bVarName
(no author)
committed
file_char_to_use = A_CONST if (imageType == ORIGINAL_A) else B_CONST
units_text_to_use = aUnitsText if (imageType == ORIGINAL_A) else bUnitsText
oneD_color_to_use = 'b' if (imageType == ORIGINAL_A) else 'c'
(no author)
committed
plotAsRGB = self.dataModel.getDoPlotAsRGB(A_CONST if imageType == ORIGINAL_A else B_CONST)
# if the data doesn't exist, we can't make this plot
raise ValueError(NO_DATA_MESSAGE)
(no author)
committed
if dataForm == SIMPLE_2D :
(no author)
committed
if plotAsRGB :
figures.create_raw_image_plot(data_object_to_use.data, "RGB image in File " + file_char_to_use)
else :
tempFigure = figures.create_simple_figure(data_object_to_use.data, var_name_to_use + "\nin File " + file_char_to_use,
invalidMask=~data_object_to_use.masks.valid_mask, colorMap=colorMapToUse,
colorbarLimits=rangeInfo, units=units_text_to_use)
(no author)
committed
elif dataForm == MAPPED_2D :
(no author)
committed
tempLonObj = lonlatData[file_char_to_use][0]
tempLatObj = lonlatData[file_char_to_use][1]
tempValid = data_object_to_use.masks.valid_mask
tempValid &= tempLonObj.masks.valid_mask
tempValid &= tempLatObj.masks.valid_mask
tempFigure = figures.create_mapped_figure(data_object_to_use.data,
tempLatObj.data, tempLonObj.data,
basemapObject, boundingAxes,
var_name_to_use + "\nin File " + file_char_to_use,
invalidMask=~tempValid, colorMap=colorMapToUse,
units=units_text_to_use)
(no author)
committed
elif dataForm == ONLY_1D :
temp = [(data_object_to_use.data, ~data_object_to_use.masks.valid_mask, oneD_color_to_use, None, None, None)]
tempFigure = figures.create_line_plot_figure(temp, var_name_to_use + "\n in File " + file_char_to_use)
(no author)
committed
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif (imageType == HISTOGRAM_A) or (imageType == HISTOGRAM_B) :
# Note: histograms don't care about data format requested, they are histogram formatted
# select the things that are file A or B specific
(no author)
committed
file_desc_to_use = A_CONST if (imageType == HISTOGRAM_A) else B_CONST
var_name_to_use = aVarName if (imageType == HISTOGRAM_A) else bVarName
data_object_to_use = aDataObject if (imageType == HISTOGRAM_A) else bDataObject
units_text_to_use = aUnitsText if (imageType == HISTOGRAM_A) else bUnitsText
# if the data doesn't exist, we can't make this plot
raise ValueError(NO_DATA_MESSAGE)
# build the histogram
clean_data = data_object_to_use.data[data_object_to_use.masks.valid_mask]
# TODO, should the range option be added here?
tempFigure = figures.create_histogram(clean_data, DEFAULT_NUM_BINS, var_name_to_use + "\nin File " + file_desc_to_use,
"Value of data at a given point", "Number of points with a given value", units=units_text_to_use)
(no author)
committed
elif imageType in COMPARISON_IMAGES :
# if we're making the absolute or raw difference image, do that
(no author)
committed
if (imageType == ABS_DIFF) or (imageType == RAW_DIFF) :
# now choose between the raw and abs diff
dataToUse = diffData.diff_data_object.data
titlePrefix = "Value of (Data File B - Data File A)\nfor "
(no author)
committed
if imageType == ABS_DIFF :
dataToUse = np.abs(dataToUse)
titlePrefix = "Absolute value of difference\nin "
(no author)
committed
if dataForm == SIMPLE_2D :
tempFigure = figures.create_simple_figure(dataToUse, titlePrefix + aVarName,
invalidMask=~diffData.diff_data_object.masks.valid_mask,
colorMap=colorMapToUse, units=aUnitsText)
elif dataForm == MAPPED_2D :
(no author)
committed
tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData)
tempValid &= diffData.diff_data_object.masks.valid_mask
tempFigure = figures.create_mapped_figure(dataToUse,
tempLatObj.data, tempLonObj.data,
basemapObject, boundingAxes,
titlePrefix + aVarName,
invalidMask=~tempValid, colorMap=colorMapToUse,
units=aUnitsText)
(no author)
committed
elif dataForm == ONLY_1D :
tempTitle = titlePrefix + aVarName
if aVarName != bVarName :
tempTitle = tempTitle + " / " + bVarName
temp = [(dataToUse, ~diffData.diff_data_object.masks.valid_mask, 'm', None, None, None)]
tempFigure = figures.create_line_plot_figure(temp, tempTitle)
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif imageType == MISMATCH :
mismatchMask = diffData.diff_data_object.masks.mismatch_mask
(no author)
committed
(no author)
committed
if dataForm == SIMPLE_2D :
tempFigure = figures.create_simple_figure(aDataObject.data, "Areas of mismatch data\nin " + aVarName,
invalidMask=~aDataObject.masks.valid_mask, tagData=mismatchMask,
colorMap=figures.MEDIUM_GRAY_COLOR_MAP, units=aUnitsText)
elif dataForm == MAPPED_2D :
(no author)
committed
tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData, doUnion=True)
tempValid &= (aDataObject.masks.valid_mask | bDataObject.masks.valid_mask)
tempData = aDataObject.copy()
tempMask = bDataObject.masks.valid_mask & ~aDataObject.masks.valid_mask
tempData.data[tempMask] = bDataObject.data[tempMask]
tempFigure = figures.create_mapped_figure(tempData.data,
tempLatObj.data, tempLonObj.data,
basemapObject, boundingAxes,
"Areas of mismatch data\nin " + aVarName,
invalidMask=~tempValid,
tagData=mismatchMask,
colorMap=figures.MEDIUM_GRAY_COLOR_MAP,
units=aUnitsText)
(no author)
committed
elif dataForm == ONLY_1D :
temp = [(aDataObject.data, ~aDataObject.masks.valid_mask, 'k', None, mismatchMask, None)]
tempFigure = figures.create_line_plot_figure(temp, "Areas of mismatch data\nin " + aVarName)
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif imageType == HISTOGRAM :
(no author)
committed
# Note: histograms don't care about data format requested, they are histogram formatted
rawDiffDataClean = diffData.diff_data_object.data[diffData.diff_data_object.masks.valid_mask]
titleText = ("Difference in\n" + aVarName) if (aVarName == bVarName) else str( "Value of\n" + bVarName + " - " + aVarName )
(no author)
committed
# TODO, should the range option be added here?
tempFigure = figures.create_histogram(rawDiffDataClean, DEFAULT_NUM_BINS, titleText,
"Value of (B - A) at each data point", "Number of points with a given difference", units=aUnitsText)
Eva Schiffer
committed
elif (imageType == SCATTER) or (imageType == D_SCATTER) or (imageType == HEX_PLOT) :
(no author)
committed
# Note: scatter and hex plots don't care about data format requested, they're scatter or hex plots
tempCleanMask = aDataObject.masks.valid_mask & bDataObject.masks.valid_mask
aDataClean = aDataObject.data[tempCleanMask]
bDataClean = bDataObject.data[tempCleanMask]
(no author)
committed
if imageType == SCATTER :
cleanMismatchMask = diffData.diff_data_object.masks.mismatch_mask[tempCleanMask]
Eva Schiffer
committed
tempFigure = figures.create_scatter_plot(aDataClean, bDataClean,
"Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
badMask=cleanMismatchMask,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
elif imageType == D_SCATTER :
tempFigure = figures.create_density_scatter_plot(aDataClean, bDataClean,
"Density of Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
else:
tempFigure = figures.create_hexbin_plot(aDataClean, bDataClean,
"Value in File A vs Value in File B",
Eva Schiffer
committed
"File A Value for " + aVarName,
"File B Value for " + bVarName,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
plt.draw()
(no author)
committed
if lonlatWarnings != "" :
raise ValueError(lonlatWarnings)