#!/usr/bin/env python # encoding: utf-8 """ This module manages creating figures for the Glance GUI. Created by evas Nov 2011. Copyright (c) 2011 University of Wisconsin SSEC. All rights reserved. """ # these first two lines must stay before the pylab import import matplotlib # Note: it's assumed that you've already set up this use previously #matplotlib.use('Qt4Agg') # use the Qt Anti-Grain Geometry rendering engine from pylab import * import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.colors as colors import logging import numpy as np import glance.data as dataobjects import glance.figures as figures import glance.graphics as maps from glance.gui_constants import * LOG = logging.getLogger(__name__) #temp_dict = {'blue': [(0.0, 0.75, 0.75), (0.11, 0.99955436720142599, 0.99955436720142599), (0.34000000000000002, 0.99810246679316883, 0.99810246679316883), (0.34999999999999998, 0.98545224541429477, 0.98545224541429477), (0.375, 0.94117647058823528, 0.94117647058823528), (0.64000000000000001, 0.51739405439595187, 0.51739405439595187), (0.65000000000000002, 0.5, 0.5), (0.66000000000000003, 0.5, 0.5), (0.89000000000000001, 0.5, 0.5), (0.91000000000000003, 0.5, 0.5), (1.0, 0.5, 0.5)], 'green': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.50098039215686274, 0.50098039215686274), (0.34000000000000002, 0.93235294117647061, 0.93235294117647061), (0.34999999999999998, 0.94803921568627447, 0.94803921568627447), (0.375, 1.0, 1.0), (0.64000000000000001, 1.0, 1.0), (0.65000000000000002, 0.97966594045025435, 0.97966594045025435), (0.66000000000000003, 0.96514161220043593, 0.96514161220043593), (0.89000000000000001, 0.53667392883079168, 0.53667392883079168), (0.91000000000000003, 0.50036310820624552, 0.50036310820624552), (1.0, 0.5, 0.5)], 'red': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.5, 0.5), (0.34000000000000002, 0.5, 0.5), (0.34999999999999998, 0.5, 0.5), (0.375, 0.54269449715370022, 0.54269449715370022), (0.64000000000000001, 0.96647691334598351, 0.96647691334598351), (0.65000000000000002, 0.98545224541429466, 0.98545224541429466), (0.66000000000000003, 0.99810246679316883, 0.99810246679316883), (0.89000000000000001, 0.99955436720142621, 0.99955436720142621), (0.91000000000000003, 0.9549910873440286, 0.9549910873440286), (1.0, 0.75, 0.75)]} temp_dict = {'blue': [(0.0, 0.58333333333333326, 0.58333333333333326), (0.11, 0.91607248960190135, 0.91607248960190135), (0.125, 0.91666666666666663, 0.91666666666666663), (0.34000000000000002, 0.91413662239089188, 0.91413662239089188), (0.34999999999999998, 0.89726966055239299, 0.89726966055239299), (0.375, 0.83823529411764708, 0.83823529411764708), (0.64000000000000001, 0.27319207252793593, 0.27319207252793593), (0.65000000000000002, 0.25, 0.25), (0.66000000000000003, 0.25, 0.25), (0.89000000000000001, 0.25, 0.25), (0.91000000000000003, 0.25, 0.25), (1.0, 0.25, 0.25)], 'green': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25130718954248366, 0.25130718954248366), (0.34000000000000002, 0.82647058823529418, 0.82647058823529418), (0.34999999999999998, 0.84738562091503267, 0.84738562091503267), (0.375, 0.91666666666666663, 0.91666666666666663), (0.64000000000000001, 0.91666666666666663, 0.91666666666666663), (0.65000000000000002, 0.88955458726700576, 0.88955458726700576), (0.66000000000000003, 0.87018881626724787, 0.87018881626724787), (0.89000000000000001, 0.29889857177438889, 0.29889857177438889), (0.91000000000000003, 0.25048414427499405, 0.25048414427499405), (1.0, 0.25, 0.25)], 'red': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25, 0.25), (0.34000000000000002, 0.25, 0.25), (0.34999999999999998, 0.25, 0.25), (0.375, 0.30692599620493355, 0.30692599620493355), (0.64000000000000001, 0.87196921779464465, 0.87196921779464465), (0.65000000000000002, 0.89726966055239288, 0.89726966055239288), (0.66000000000000003, 0.91413662239089177, 0.91413662239089177), (0.89000000000000001, 0.91607248960190157, 0.91607248960190157), (0.91000000000000003, 0.85665478312537158, 0.85665478312537158), (1.0, 0.58333333333333326, 0.58333333333333326)]} DESAT_MAP = matplotlib.colors.LinearSegmentedColormap('colormap', temp_dict, 1024) # colormaps that are available in the GUI temp_spectral = cm.spectral if hasattr(cm, 'spectral') else cm.Spectral # newer matplotlib changed the name of this color map temp_rspectral = cm.spectral_r if hasattr(cm, 'spectral_r') else cm.Spectral_r AVAILABLE_COLORMAPS = { "Viridis": cm.viridis, "Cividis": cm.cividis, "Plasma": cm.plasma, "Ocean": cm.ocean, "Spectral Rainbow": temp_spectral, "Spectral Rainbow, Reverse": temp_rspectral, "Grayscale": cm.bone, "Grayscale, Reverse": cm.bone_r, } # note: we expect other modules to reference the COLORMAP_NAMES COLORMAP_NAMES = list(AVAILABLE_COLORMAPS.keys()) # whether or not the plot can be drawn on a map CAN_BE_MAPPED = { ORIGINAL_A : True, ORIGINAL_B : True, ABS_DIFF : True, RAW_DIFF : True, HISTOGRAM_A : False, HISTOGRAM_B : False, HISTOGRAM : False, MISMATCH : True, SCATTER : False, D_SCATTER : False, HEX_PLOT : False, } # which data sets the plot needs NEEDED_DATA_PER_PLOT = \ { ORIGINAL_A : {A_CONST, }, ORIGINAL_B : { B_CONST,}, ABS_DIFF : {A_CONST, B_CONST,}, RAW_DIFF : {A_CONST, B_CONST,}, HISTOGRAM_A : {A_CONST, }, HISTOGRAM_B : { B_CONST,}, HISTOGRAM : {A_CONST, B_CONST,}, MISMATCH : {A_CONST, B_CONST,}, SCATTER : {A_CONST, B_CONST,}, D_SCATTER : {A_CONST, B_CONST,}, HEX_PLOT : {A_CONST, B_CONST,}, } class TooMuchDataForPlot(Exception): """ An exception to be used when there's too much data to practically provide a plot when requested """ def __init__(self, dataSize): """ create this exception, giving a message based on the file path """ self.message = str("Unable to create requested plot. The data size of " + str(dataSize) + " was too large for the requested plot type.") def __str__(self): return self.message class GlanceGUIFigures (object) : """ This class handles creating figures for the glance gui. (in future it may manage them more actively) it includes: self.dataModel - the GlanceGUIModel object that contains the main data model for the GUI self.errorHandlers - objects that want to be notified when there's a serious error """ def __init__ (self, dataModelToSave) : """ create a figure manager, hanging on to the data model, for use in creating figures """ self.dataModel = dataModelToSave self.errorHandlers = [ ] def registerErrorHandler (self, objectToRegister) : """ add the given object to our list of error handlers """ if objectToRegister not in self.errorHandlers : self.errorHandlers.append(objectToRegister) def _getVariableInformation (self, filePrefix, variableName=None, doCorrections=True) : """ Pull the name, data, and units for the variable currently selected in the given file prefix """ varNameToUse = variableName if varNameToUse is None : varNameToUse = self.dataModel.getVariableName(filePrefix) # get the currently selected variable dataObject = self.dataModel.getVariableData(filePrefix, varNameToUse, doCorrections=doCorrections) unitsText = self.dataModel.getUnitsText (filePrefix, varNameToUse) if dataObject is not None : dataObject.self_analysis() return varNameToUse, dataObject, unitsText def _getVariableInfoSmart (self, filePrefix, imageType) : """ if appropriate for the image type, get information on the variable, otherwise return None's """ varName, dataObject, unitsText = None, None, None # only load the data if it will be needed for the plot if ( self.dataModel.getShouldShowOriginalPlotsInSameRange() or ( filePrefix in NEEDED_DATA_PER_PLOT[imageType] ) ) : shouldUseRGBVersion = self.dataModel.getDoPlotAsRGB(filePrefix) and ( (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) ) varName, dataObject, unitsText = self._getVariableInformation(filePrefix) if not shouldUseRGBVersion else self._makeRGBdata(filePrefix) return varName, dataObject, unitsText def _makeRGBdata (self, filePrefix) : """ build an RGB or RGBA version of the data """ # get the red, green, and blue data canGetData = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [RED_VAR_NAME, GREEN_VAR_NAME, BLUE_VAR_NAME]) if not canGetData : # if the basic rgb data doesn't exist, stop now return "", None, "" _, rDataObj, _ = self._getVariableInformation(filePrefix, variableName=RED_VAR_NAME, doCorrections=False) _, gDataObj, _ = self._getVariableInformation(filePrefix, variableName=GREEN_VAR_NAME, doCorrections=False) _, bDataObj, _ = self._getVariableInformation(filePrefix, variableName=BLUE_VAR_NAME, doCorrections=False) # if possible get alpha data _ = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [ALPHA_VAR_NAME]) # we need to make sure the model loads the data, but it's optional _, aDataObj, _ = self._getVariableInformation(filePrefix, variableName=ALPHA_VAR_NAME, doCorrections=False) # build the finished rgb set rawData = [rDataObj.data, gDataObj.data, bDataObj.data] if aDataObj is None else [rDataObj.data, gDataObj.data, bDataObj.data, aDataObj.data] rawData = np.rot90(np.fliplr(np.transpose(np.array(rawData)))) # now that the data is in the right shape/orientation make the data object newDataObj = dataobjects.DataObject(rawData, fillValue=rDataObj.fill_value) # TODO, need to fix the fill values if they differ newDataObj.self_analysis() # return varName, dataObject, unitsText return "rgb data", newDataObj, "" def _buildDiffInfoObjectSmart (self, imageType, dataObjectA, dataObjectB, varNameA, varNameB, epsilon_value=None, epsilon_percent=None) : """ if appropriate for the image type, build the difference object, otherwise return None this method may raise an IncompatableDataObjects exception if the two data objects it's given can't be compared """ diffObject = None # only build the difference if we need to compare the data if imageType in COMPARISON_IMAGES : # check to see if our data is minimally compatable; this call may raise an IncompatableDataObjects exception dataobjects.DiffInfoObject.verifyDataCompatability (dataObjectA, dataObjectB, varNameA, varNameB) # compare our data diffObject = dataobjects.DiffInfoObject(dataObjectA, dataObjectB, epsilonValue=epsilon_value, epsilonPercent=epsilon_percent) return diffObject def _load_and_analyse_lonlat (self, listOfFilePrefixes=list({A_CONST, B_CONST,}), lonNames=None, latNames=None, ) : """ load information on the longitude and latitude, if there are multiple file prefixes given: find the shared range analyse how different the navigation is between the files (if there is a lon/lat epsilon defined and the difference is more than that, either stop with an error or log a warning) lonNames and latNames should be dictionaries giving the names of the longitude and latitude variables indexed by the file prefixes This method may raise an IncompatableDataObjects exception if multiple file prefixes are passed in the listOfFilePrefixes and the longitude and latitudes for those files can not be compared. """ lonlatData = { } extents = None # this now explicitly only works for 1 or 2 data sets if len(listOfFilePrefixes) > 2 or len(listOfFilePrefixes) <= 0 : LOG.debug("Somehow you've gotten into a state where you're trying to analyze lonlat for a meaningless number of files.") return { }, None, None # load and process stuff for each file prefix for filePrefix in listOfFilePrefixes: # get information on the lon/lat from the current file currentLonObj, currentLatObj = self._load_lonlat(filePrefix, lonNames[filePrefix], latNames[filePrefix]) currentLonObj.self_analysis() currentLatObj.self_analysis() # we can't use longitude and latitude that don't match in size if currentLonObj.data.shape != currentLatObj.data.shape: raise ValueError("Longitude and Latitude for file " + filePrefix + " are different shapes." + "\nCannot match differently shaped navigation data.") # add this data to the list of lonlat data lonlatData[filePrefix] = [currentLonObj, currentLatObj] # now handle calculating the extents and double checking shapes # if we only have one data set if len(listOfFilePrefixes) == 1 : filePrefix = listOfFilePrefixes[0] lonObjTemp = lonlatData[filePrefix][0] latObjTemp = lonlatData[filePrefix][1] # get the extents temp_good_mask = ~lonObjTemp.masks.ignore_mask & ~latObjTemp.masks.ignore_mask extents = maps.get_extents(lonObjTemp.data, latObjTemp.data, lon_good_mask=temp_good_mask, lat_good_mask=temp_good_mask, ) # otherwise we should have two data sets else : firstPrefix = listOfFilePrefixes[0] lonObjTemp1 = lonlatData[firstPrefix][0] latObjTemp1 = lonlatData[firstPrefix][1] secondPrefix = listOfFilePrefixes[1] lonObjTemp2 = lonlatData[secondPrefix][0] latObjTemp2 = lonlatData[secondPrefix][1] # double check that these two sets are the same shape if lonObjTemp1.data.shape != lonObjTemp2.data.shape : raise ValueError("Navigation data for file " + firstPrefix + " is a different shape than that for file " + secondPrefix + "." + "\nCannot match differently shaped navigation data.") temp_good_mask = ~lonObjTemp1.masks.ignore_mask & ~latObjTemp1.masks.ignore_mask temp_good_mask_b = ~lonObjTemp2.masks.ignore_mask & ~latObjTemp2.masks.ignore_mask extents = maps.get_extents(lonObjTemp1.data, latObjTemp1.data, lon_good_mask=temp_good_mask, lat_good_mask=temp_good_mask, longitude_data_b=lonObjTemp2.data, latitude_data_b=latObjTemp2.data, lon_good_mask_b=temp_good_mask_b, lat_good_mask_b=temp_good_mask_b, ) # return longitude and latitude information and the shared ranges return lonlatData, extents def _load_lonlat (self, filePrefix, lonName, latName) : """ load the longitude and latitude information for the file """ _, lonObject, _ = self._getVariableInformation(filePrefix, lonName, doCorrections=False) _, latObject, _ = self._getVariableInformation(filePrefix, latName, doCorrections=False) # make sure we aren't processing lon or lat values that are outside the acceptable range maps.clean_lon_and_lat(lonObject, latObject,) return lonObject, latObject def _find_common_lonlat (self, lonlatData, doUnion=False) : """ given lonlatData like that created by _load_and_analyse_lonlat find a common set of longitude and latitude If doUnion is True, create a set that contains valid longitudes and latitudes in as many places as possible. Navigation data will be chosen preferentially based on the sorting order of the keys in lonlatData. If doUnion is False, the intersection of the data will be produced instead (using the first data set by key order and masking by data placement in later sets). """ commonLon = None commonLat = None validMask = None # look through each of the possible data sets for file_prefix in sorted(lonlatData) : tempLonObj, tempLatObj = lonlatData[file_prefix] if commonLon is None : commonLon = tempLonObj.copy() commonLat = tempLatObj.copy() commonLon.self_analysis() commonLat.self_analysis() validMask = commonLon.masks.valid_mask & commonLat.masks.valid_mask else : tempLonObj.self_analysis() tempLatObj.self_analysis() if doUnion : newValid = (tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & ~ validMask commonLon.data[newValid] = tempLonObj.data[newValid] commonLat.data[newValid] = tempLatObj.data[newValid] validMask |= newValid else: newInvalid = ~(tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & validMask commonLon.data[newInvalid] = commonLon.fill_value commonLat.data[newInvalid] = commonLat.fill_value validMask &= ~newInvalid # since we changed the data, rebuild the internal analysis commonLat.self_analysis(re_do_analysis=True) commonLon.self_analysis(re_do_analysis=True) LOG.debug("common lon/lat validMask.shape: " + str(validMask.shape)) LOG.debug("common lon/lat sum(validMask): " + str(sum(validMask))) return commonLon, commonLat, validMask def spawnPlot (self) : """ create a matplotlib plot using the current model information this method may raise an IncompatableDataObjects exception if the a and b data are completely incomparable this method may also raise a ValueError if the data could not be plotted for reasons not encompassed by an IncompatableDataObjects exception """ # retrieve some plotting settings imageType = self.dataModel.getImageType() dataForm = self.dataModel.getDataForm() colorMapToUse = AVAILABLE_COLORMAPS[self.dataModel.getColormapName()] LOG.info ("Preparing variable data for plotting...") # load the variable data aVarName, aDataObject, aUnitsText = self._getVariableInfoSmart(A_CONST, imageType) bVarName, bDataObject, bUnitsText = self._getVariableInfoSmart(B_CONST, imageType) # compare the variables diffData = self._buildDiffInfoObjectSmart(imageType, aDataObject, bDataObject, aVarName, bVarName, epsilon_value=self.dataModel.getEpsilon(), epsilon_percent=self.dataModel.getEpsilonPercent()) # if we need to build a shared range, do that now rangeInfo = None if self.dataModel.getShouldShowOriginalPlotsInSameRange() and (aDataObject is not None) and (bDataObject is not None) : rangeInfo = [min(aDataObject.get_min(), bDataObject.get_min()), max(aDataObject.get_max(), bDataObject.get_max())] # if the user asked for a mapped plotting format and type of plot that is mapped lonlatData = None navExtents = None in_proj = None out_proj = None lonlatWarnings = "" if (dataForm == MAPPED_2D) and CAN_BE_MAPPED[imageType] : # get the longitude and latitude information for the files, as needed dataNeeded = list(NEEDED_DATA_PER_PLOT[imageType]) # this is naturally a set, use a list here lonNames = { } latNames = { } for file_const in dataNeeded : lonNames[file_const] = self.dataModel.getLongitudeName(file_const) latNames[file_const] = self.dataModel.getLatitudeName (file_const) lonlatData, navExtents = self._load_and_analyse_lonlat(listOfFilePrefixes=dataNeeded, lonNames=lonNames, latNames=latNames) # double check that lon/lat are compatible with the data if (aDataObject is not None) and (A_CONST in dataNeeded) : if lonlatData[A_CONST][0].data.shape != aDataObject.data.shape : raise ValueError("Unable to use selected navigation variables for file " + A_CONST + "\nbecause they differ in size from the selected data variable for that file.") if (bDataObject is not None) and (B_CONST in dataNeeded) : if lonlatData[B_CONST][0].data.shape != bDataObject.data.shape : raise ValueError("Unable to use selected navigation variables for file " + B_CONST + "\nbecause they differ in size from the selected data variable for that file.") # get the cartopy projections in_proj, out_proj = maps.create_cartopy_proj_objects(navExtents, ) # do a rough comparison of the longitude and latitude if (aDataObject is not None) and (bDataObject is not None) : llEpsilon = self.dataModel.getLLEpsilon() lonDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][0], lonlatData[B_CONST][0], epsilonValue=llEpsilon) latDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][1], lonlatData[B_CONST][1], epsilonValue=llEpsilon) validA = lonlatData[A_CONST][0].masks.valid_mask & lonlatData[A_CONST][1].masks.valid_mask validB = lonlatData[B_CONST][0].masks.valid_mask & lonlatData[B_CONST][1].masks.valid_mask if sum(validA ^ validB) > 0 : lonlatWarnings += "Valid areas in the two files do not match.\n" lonlatWarnings += ("File " + A_CONST + " contains " + str(sum(validA & ~ validB)) + " points which are not valid in file " + B_CONST + ".\n") lonlatWarnings += ("File " + B_CONST + " contains " + str(sum(validB & ~ validA)) + " points which are not valid in file " + A_CONST + ".\n") if sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 : lonlatWarnings += (str(sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask)) + " longitude points differed by more than the epsilon of " + str(llEpsilon) + " between the two files.\n") if sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 : lonlatWarnings += (str(sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask)) + " latitude points differed by more than the epsilon of " + str(llEpsilon) + " between the two files.\n") LOG.info("Spawning plot window: " + imageType) plt.ion() # make sure interactive plotting is on # create whichever type of plot was asked for tempFigure = None if (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) : # sort out some values based on which of the data sets we're showing data_object_to_use = aDataObject if (imageType == ORIGINAL_A) else bDataObject var_name_to_use = aVarName if (imageType == ORIGINAL_A) else bVarName file_char_to_use = A_CONST if (imageType == ORIGINAL_A) else B_CONST units_text_to_use = aUnitsText if (imageType == ORIGINAL_A) else bUnitsText oneD_color_to_use = 'b' if (imageType == ORIGINAL_A) else 'c' plotAsRGB = self.dataModel.getDoPlotAsRGB(A_CONST if imageType == ORIGINAL_A else B_CONST) # if the data doesn't exist, we can't make this plot if data_object_to_use is None : raise ValueError(NO_DATA_MESSAGE) if dataForm == SIMPLE_2D : # double check that our data is a shape we can handle for this type of plot if len(data_object_to_use.data.shape) != 2 : raise ValueError("Two dimensional data is required for this plot type. " "The provided variable data is " + str(data_object_to_use.data.shape) + " shaped.") if plotAsRGB : figures.create_raw_image_plot(data_object_to_use.data, "RGB image in File " + file_char_to_use) else : tempFigure = figures.create_simple_figure(data_object_to_use.data, var_name_to_use + "\nin File " + file_char_to_use, invalidMask=~data_object_to_use.masks.valid_mask, colorMap=colorMapToUse, colorbarLimits=rangeInfo, units=units_text_to_use) elif dataForm == MAPPED_2D : tempLonObj = lonlatData[file_char_to_use][0] tempLatObj = lonlatData[file_char_to_use][1] tempValid = data_object_to_use.masks.valid_mask tempValid &= tempLonObj.masks.valid_mask tempValid &= tempLatObj.masks.valid_mask tempFigure = figures.create_mapped_figure(data_object_to_use.data, tempLatObj.data, tempLonObj.data, in_proj, out_proj, navExtents, var_name_to_use + "\nin File " + file_char_to_use, invalidMask=~tempValid, colorMap=colorMapToUse, units=units_text_to_use) elif dataForm == ONLY_1D : temp = [(data_object_to_use.data, ~data_object_to_use.masks.valid_mask, oneD_color_to_use, None, None, None)] tempFigure = figures.create_line_plot_figure(temp, var_name_to_use + "\n in File " + file_char_to_use) else : raise ValueError(UNKNOWN_DATA_FORM) elif (imageType == HISTOGRAM_A) or (imageType == HISTOGRAM_B) : # Note: histograms don't care about data format requested, they are histogram formatted # select the things that are file A or B specific file_desc_to_use = A_CONST if (imageType == HISTOGRAM_A) else B_CONST var_name_to_use = aVarName if (imageType == HISTOGRAM_A) else bVarName data_object_to_use = aDataObject if (imageType == HISTOGRAM_A) else bDataObject units_text_to_use = aUnitsText if (imageType == HISTOGRAM_A) else bUnitsText # if the data doesn't exist, we can't make this plot if data_object_to_use is None : raise ValueError(NO_DATA_MESSAGE) # build the histogram clean_data = data_object_to_use.data[data_object_to_use.masks.valid_mask] # TODO, should the range option be added here? tempFigure = figures.create_histogram(clean_data, DEFAULT_NUM_BINS, var_name_to_use + "\nin File " + file_desc_to_use, "Value of data at a given point", "Number of points with a given value", units=units_text_to_use) elif imageType in COMPARISON_IMAGES : # if we're making the absolute or raw difference image, do that if (imageType == ABS_DIFF) or (imageType == RAW_DIFF) : # now choose between the raw and abs diff dataToUse = diffData.diff_data_object.data titlePrefix = "Value of (Data File B - Data File A)\nfor " if imageType == ABS_DIFF : dataToUse = np.abs(dataToUse) titlePrefix = "Absolute value of difference\nin " if dataForm == SIMPLE_2D : tempFigure = figures.create_simple_figure(dataToUse, titlePrefix + aVarName, invalidMask=~diffData.diff_data_object.masks.valid_mask, colorMap=colorMapToUse, units=aUnitsText) elif dataForm == MAPPED_2D : tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData) tempValid &= diffData.diff_data_object.masks.valid_mask tempFigure = figures.create_mapped_figure(dataToUse, tempLatObj.data, tempLonObj.data, in_proj, out_proj, navExtents, titlePrefix + aVarName, invalidMask=~tempValid, colorMap=colorMapToUse, units=aUnitsText) elif dataForm == ONLY_1D : tempTitle = titlePrefix + aVarName if aVarName != bVarName : tempTitle = tempTitle + " / " + bVarName temp = [(dataToUse, ~diffData.diff_data_object.masks.valid_mask, 'm', None, None, None)] tempFigure = figures.create_line_plot_figure(temp, tempTitle) else : raise ValueError(UNKNOWN_DATA_FORM) elif imageType == MISMATCH : mismatchMask = diffData.diff_data_object.masks.mismatch_mask if dataForm == SIMPLE_2D : tempFigure = figures.create_simple_figure(aDataObject.data, "Areas of mismatch data\nin " + aVarName, invalidMask=~aDataObject.masks.valid_mask, tagData=mismatchMask, colorMap=figures.MEDIUM_GRAY_COLOR_MAP, units=aUnitsText) elif dataForm == MAPPED_2D : tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData, doUnion=True) tempValid &= (aDataObject.masks.valid_mask | bDataObject.masks.valid_mask) tempData = aDataObject.copy() tempMask = bDataObject.masks.valid_mask & ~aDataObject.masks.valid_mask tempData.data[tempMask] = bDataObject.data[tempMask] tempFigure = figures.create_mapped_figure(tempData.data, tempLatObj.data, tempLonObj.data, in_proj, out_proj, navExtents, "Areas of mismatch data\nin " + aVarName, invalidMask=~tempValid, tagData=mismatchMask, colorMap=figures.MEDIUM_GRAY_COLOR_MAP, units=aUnitsText) elif dataForm == ONLY_1D : temp = [(aDataObject.data, ~aDataObject.masks.valid_mask, 'k', None, mismatchMask, None)] tempFigure = figures.create_line_plot_figure(temp, "Areas of mismatch data\nin " + aVarName) else : raise ValueError(UNKNOWN_DATA_FORM) elif imageType == HISTOGRAM : # Note: histograms don't care about data format requested, they are histogram formatted rawDiffDataClean = diffData.diff_data_object.data[diffData.diff_data_object.masks.valid_mask] titleText = ("Difference in\n" + aVarName) if (aVarName == bVarName) else str( "Value of\n" + bVarName + " - " + aVarName ) # TODO, should the range option be added here? tempFigure = figures.create_histogram(rawDiffDataClean, DEFAULT_NUM_BINS, titleText, "Value of (B - A) at each data point", "Number of points with a given difference", units=aUnitsText) elif (imageType == SCATTER) or (imageType == D_SCATTER) or (imageType == HEX_PLOT) : # Note: scatter and hex plots don't care about data format requested, they're scatter or hex plots tempCleanMask = aDataObject.masks.valid_mask & bDataObject.masks.valid_mask aDataClean = aDataObject.data[tempCleanMask] bDataClean = bDataObject.data[tempCleanMask] if imageType == SCATTER : cleanMismatchMask = diffData.diff_data_object.masks.mismatch_mask[tempCleanMask] if figures.check_data_amount_for_scatter_plot(aDataClean.size) : tempFigure = figures.create_scatter_plot(aDataClean, bDataClean, "Value in File A vs Value in File B", "File A Value for " + aVarName, "File B Value for " + bVarName, badMask=cleanMismatchMask, epsilon=self.dataModel.getEpsilon(), units_x=aUnitsText, units_y=bUnitsText) else : # this is too much data to make a scatter plot, warn the user raise TooMuchDataForPlot(aDataClean.size) elif imageType == D_SCATTER : tempFigure = figures.create_density_scatter_plot(aDataClean, bDataClean, "Density of Value in File A vs Value in File B", "File A Value for " + aVarName, "File B Value for " + bVarName, epsilon=self.dataModel.getEpsilon(), units_x=aUnitsText, units_y=bUnitsText) else: if figures.check_data_amount_for_hex_plot(aDataClean.size) : tempFigure = figures.create_hexbin_plot(aDataClean, bDataClean, "Value in File A vs Value in File B", "File A Value for " + aVarName, "File B Value for " + bVarName, epsilon=self.dataModel.getEpsilon(), units_x=aUnitsText, units_y=bUnitsText) else : # this is too much data to make a hex plot, warn the user raise TooMuchDataForPlot(aDataClean.size) plt.draw() LOG.debug("Created figure: " + str(tempFigure)) if lonlatWarnings != "" : raise ValueError(lonlatWarnings)