Skip to content
Snippets Groups Projects
Commit 5193fbfe authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 766e2339
No related branches found
No related tags found
No related merge requests found
......@@ -359,16 +359,12 @@ class ESPCN:
kernel_initializer = 'he_uniform'
momentum = 0.99
num_filters = 64
num_filters = 32
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv = input_2d
print('input: ', conv.shape)
# conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer)(input_2d)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer, activation=activation)(input_2d)
print(conv.shape)
if NOISE_TRAINING:
......@@ -394,8 +390,7 @@ class ESPCN:
# conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
# print(conv.shape)
# conv = tf.nn.depth_to_space(conv, factor)
# #conv = tf.keras.layers.Conv2DTranspose(num_filters * (factor ** 2), 3, padding='same')(conv)
conv = tf.nn.depth_to_space(conv, factor)
print(conv.shape)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
......@@ -425,8 +420,6 @@ class ESPCN:
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
#self.train_loss = tf.keras.metrics.Mean(name='train_loss')
#self.test_loss = tf.keras.metrics.Mean(name='test_loss')
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
......@@ -590,10 +583,6 @@ class ESPCN:
self.writer_valid.close()
self.writer_train_valid_loss.close()
# f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
# pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
# f.close()
def build_model(self):
self.build_espcn()
self.model = tf.keras.Model(self.inputs, self.logits)
......@@ -666,27 +655,6 @@ class ESPCN:
return self.do_evaluate(nda_lr, param, ckpt_dir)
def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'):
nda = np.load(filename)
# nda = nda[:, param_idx, :, :]
nda_lr = nda[:, param_idx, 2:133:2, 2:133:2]
# nda_lr = resample(x_134, y_134, nda, x_134_2, y_134_2)
nda_lr = np.expand_dims(nda_lr, axis=3)
return nda_lr
def run_evaluate_static(in_file, out_file, param='temp_11_0um_nom', ckpt_dir='/Users/tomrink/tf_model_sres/run-20220805173619/'):
nda = np.load(in_file)
nda = np.transpose(nda[0, 2, 3, 1])
nn = ESPCN()
out_sr = nn.run_evaluate(nda, param, ckpt_dir)
if out_file is not None:
np.save(out_file, out_sr)
else:
return out_sr
if __name__ == "__main__":
nn = ESPCN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment