Skip to content
Snippets Groups Projects
Commit 766e2339 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 5050263d
No related branches found
No related tags found
No related merge requests found
...@@ -61,33 +61,17 @@ label_idx = params.index(label_param) ...@@ -61,33 +61,17 @@ label_idx = params.index(label_param)
print('data_params: ', data_params) print('data_params: ', data_params)
print('label_param: ', label_param) print('label_param: ', label_param)
# x_134 = np.arange(134)
# y_134 = np.arange(134) x_138 = np.arange(138)
# x_64 = np.arange(64) y_138 = np.arange(138)
# y_64 = np.arange(64)
# x_134_2 = x_134[3:131:2] slc_x_2 = slice(0, 138, 2)
# y_134_2 = y_134[3:131:2] slc_y_2 = slice(0, 138, 2)
# t = np.arange(0, 64, 0.5) slc_x = slice(1, 67)
# s = np.arange(0, 64, 0.5) slc_y = slice(1, 67)
#
# x_128_2 = x_134[3:131:2] lbl_slc_x = slice(4, 132)
# y_128_2 = y_134[3:131:2] lbl_slc_y = slice(4, 132)
# x_128 = x_134[3:131]
# y_128 = y_134[3:131]
#----------- New
# x_134_2 = x_134[1:134:2]
# t = np.arange(1, 66, 0.5)
#--------------------------
x_64 = np.arange(64)
y_64 = np.arange(64)
t = np.arange(0, 64, 0.5)
s = np.arange(0, 64, 0.5)
x_128_2 = slice(3, 131, 2)
y_128_2 = slice(3, 131, 2)
x_128 = slice(3, 131)
y_128 = slice(3, 131)
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
...@@ -268,19 +252,22 @@ class CNN: ...@@ -268,19 +252,22 @@ class CNN:
data_norm = [] data_norm = []
for param in data_params: for param in data_params:
idx = params.index(param) idx = params.index(param)
tmp = input_data[:, idx, y_128, x_128] tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = tmp[:, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
# tmp = resample_2d_linear(x_64, y_64, tmp, t, s) # tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp) data_norm.append(tmp)
# -------------------------- # --------------------------
param = 'refl_0_65um_nom' param = 'refl_0_65um_nom'
idx = params.index(param) idx = params.index(param)
tmp = input_data[:, idx, y_128, x_128] tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = tmp[:, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
# tmp = resample_2d_linear(x_64, y_64, tmp, t, s) # tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp) data_norm.append(tmp)
# -------- # --------
tmp = input_data[:, label_idx, y_128, x_128] tmp = input_data[:, label_idx, slc_y_2, slc_x_2]
tmp = tmp[:, slc_y, slc_x]
tmp = np.where(np.isnan(tmp), 0, tmp) # shouldn't need this tmp = np.where(np.isnan(tmp), 0, tmp) # shouldn't need this
data_norm.append(tmp) data_norm.append(tmp)
# --------- # ---------
...@@ -288,7 +275,7 @@ class CNN: ...@@ -288,7 +275,7 @@ class CNN:
data = data.astype(np.float32) data = data.astype(np.float32)
# ----------------------------------------------------- # -----------------------------------------------------
# ----------------------------------------------------- # -----------------------------------------------------
label = input_data[:, label_idx, y_128, x_128] label = input_data[:, label_idx, lbl_slc_y, lbl_slc_x]
label = self.get_label_data(label) label = self.get_label_data(label)
label = np.expand_dims(label, axis=3) label = np.expand_dims(label, axis=3)
...@@ -444,15 +431,15 @@ class CNN: ...@@ -444,15 +431,15 @@ class CNN:
input_2d = self.inputs[0] input_2d = self.inputs[0]
print('input: ', input_2d.shape) print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding='VALID', activation=activation)(input_2d)
conv = input_2d # conv = input_2d
print('input: ', conv.shape) print('input: ', conv.shape)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(input_2d) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=2, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=2, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv)
print(conv.shape) print(conv.shape)
if NOISE_TRAINING: if NOISE_TRAINING:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment