diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index bcfb850545b8994ca40d9a20a76abfaf8c3abacc..ecb9123c39fb48b41730781c6a35f5ff83cd095a 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -61,33 +61,17 @@ label_idx = params.index(label_param) print('data_params: ', data_params) print('label_param: ', label_param) -# x_134 = np.arange(134) -# y_134 = np.arange(134) -# x_64 = np.arange(64) -# y_64 = np.arange(64) -# x_134_2 = x_134[3:131:2] -# y_134_2 = y_134[3:131:2] -# t = np.arange(0, 64, 0.5) -# s = np.arange(0, 64, 0.5) -# -# x_128_2 = x_134[3:131:2] -# y_128_2 = y_134[3:131:2] -# x_128 = x_134[3:131] -# y_128 = y_134[3:131] - -#----------- New -# x_134_2 = x_134[1:134:2] -# t = np.arange(1, 66, 0.5) -#-------------------------- - -x_64 = np.arange(64) -y_64 = np.arange(64) -t = np.arange(0, 64, 0.5) -s = np.arange(0, 64, 0.5) -x_128_2 = slice(3, 131, 2) -y_128_2 = slice(3, 131, 2) -x_128 = slice(3, 131) -y_128 = slice(3, 131) + +x_138 = np.arange(138) +y_138 = np.arange(138) + +slc_x_2 = slice(0, 138, 2) +slc_y_2 = slice(0, 138, 2) +slc_x = slice(1, 67) +slc_y = slice(1, 67) + +lbl_slc_x = slice(4, 132) +lbl_slc_y = slice(4, 132) def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', @@ -268,19 +252,22 @@ class CNN: data_norm = [] for param in data_params: idx = params.index(param) - tmp = input_data[:, idx, y_128, x_128] + tmp = input_data[:, idx, slc_y_2, slc_x_2] + tmp = tmp[:, slc_y, slc_x] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) # tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------------------------- param = 'refl_0_65um_nom' idx = params.index(param) - tmp = input_data[:, idx, y_128, x_128] + tmp = input_data[:, idx, slc_y_2, slc_x_2] + tmp = tmp[:, slc_y, slc_x] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) # tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- - tmp = input_data[:, label_idx, y_128, x_128] + tmp = input_data[:, label_idx, slc_y_2, slc_x_2] + tmp = tmp[:, slc_y, slc_x] tmp = np.where(np.isnan(tmp), 0, tmp) # shouldn't need this data_norm.append(tmp) # --------- @@ -288,7 +275,7 @@ class CNN: data = data.astype(np.float32) # ----------------------------------------------------- # ----------------------------------------------------- - label = input_data[:, label_idx, y_128, x_128] + label = input_data[:, label_idx, lbl_slc_y, lbl_slc_x] label = self.get_label_data(label) label = np.expand_dims(label, axis=3) @@ -444,15 +431,15 @@ class CNN: input_2d = self.inputs[0] print('input: ', input_2d.shape) - # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) - conv = input_2d + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding='VALID', activation=activation)(input_2d) + # conv = input_2d print('input: ', conv.shape) - conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(input_2d) + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) + # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=2, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) + # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=2, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) print(conv.shape) if NOISE_TRAINING: