diff --git a/modules/deeplearning/espcn_l1b_l2.py b/modules/deeplearning/espcn_l1b_l2.py index ba349d134c5bd7ebd6ebcb2ddd1621f082cce055..6dc9e81619bdc6eb1dabc4e6650399782e8b81f3 100644 --- a/modules/deeplearning/espcn_l1b_l2.py +++ b/modules/deeplearning/espcn_l1b_l2.py @@ -359,16 +359,12 @@ class ESPCN: kernel_initializer = 'he_uniform' momentum = 0.99 - num_filters = 64 + num_filters = 32 input_2d = self.inputs[0] print('input: ', input_2d.shape) - # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) - conv = input_2d - print('input: ', conv.shape) - # conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d) - conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer)(input_2d) + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer, activation=activation)(input_2d) print(conv.shape) if NOISE_TRAINING: @@ -394,8 +390,7 @@ class ESPCN: # conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv) # print(conv.shape) - # conv = tf.nn.depth_to_space(conv, factor) - # #conv = tf.keras.layers.Conv2DTranspose(num_filters * (factor ** 2), 3, padding='same')(conv) + conv = tf.nn.depth_to_space(conv, factor) print(conv.shape) self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv) @@ -425,8 +420,6 @@ class ESPCN: self.initial_learning_rate = initial_learning_rate def build_evaluation(self): - #self.train_loss = tf.keras.metrics.Mean(name='train_loss') - #self.test_loss = tf.keras.metrics.Mean(name='test_loss') self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.train_loss = tf.keras.metrics.Mean(name='train_loss') @@ -590,10 +583,6 @@ class ESPCN: self.writer_valid.close() self.writer_train_valid_loss.close() - # f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb') - # pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f) - # f.close() - def build_model(self): self.build_espcn() self.model = tf.keras.Model(self.inputs, self.logits) @@ -666,27 +655,6 @@ class ESPCN: return self.do_evaluate(nda_lr, param, ckpt_dir) -def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'): - nda = np.load(filename) - # nda = nda[:, param_idx, :, :] - nda_lr = nda[:, param_idx, 2:133:2, 2:133:2] - # nda_lr = resample(x_134, y_134, nda, x_134_2, y_134_2) - nda_lr = np.expand_dims(nda_lr, axis=3) - return nda_lr - - -def run_evaluate_static(in_file, out_file, param='temp_11_0um_nom', ckpt_dir='/Users/tomrink/tf_model_sres/run-20220805173619/'): - nda = np.load(in_file) - nda = np.transpose(nda[0, 2, 3, 1]) - - nn = ESPCN() - out_sr = nn.run_evaluate(nda, param, ckpt_dir) - if out_file is not None: - np.save(out_file, out_sr) - else: - return out_sr - - if __name__ == "__main__": nn = ESPCN() nn.run('matchup_filename')