Skip to content
Snippets Groups Projects
Commit 5193fbfe authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 766e2339
Branches
No related tags found
No related merge requests found
......@@ -359,16 +359,12 @@ class ESPCN:
kernel_initializer = 'he_uniform'
momentum = 0.99
num_filters = 64
num_filters = 32
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv = input_2d
print('input: ', conv.shape)
# conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer)(input_2d)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer, activation=activation)(input_2d)
print(conv.shape)
if NOISE_TRAINING:
......@@ -394,8 +390,7 @@ class ESPCN:
# conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
# print(conv.shape)
# conv = tf.nn.depth_to_space(conv, factor)
# #conv = tf.keras.layers.Conv2DTranspose(num_filters * (factor ** 2), 3, padding='same')(conv)
conv = tf.nn.depth_to_space(conv, factor)
print(conv.shape)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
......@@ -425,8 +420,6 @@ class ESPCN:
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
#self.train_loss = tf.keras.metrics.Mean(name='train_loss')
#self.test_loss = tf.keras.metrics.Mean(name='test_loss')
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
......@@ -590,10 +583,6 @@ class ESPCN:
self.writer_valid.close()
self.writer_train_valid_loss.close()
# f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
# pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
# f.close()
def build_model(self):
self.build_espcn()
self.model = tf.keras.Model(self.inputs, self.logits)
......@@ -666,27 +655,6 @@ class ESPCN:
return self.do_evaluate(nda_lr, param, ckpt_dir)
def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'):
nda = np.load(filename)
# nda = nda[:, param_idx, :, :]
nda_lr = nda[:, param_idx, 2:133:2, 2:133:2]
# nda_lr = resample(x_134, y_134, nda, x_134_2, y_134_2)
nda_lr = np.expand_dims(nda_lr, axis=3)
return nda_lr
def run_evaluate_static(in_file, out_file, param='temp_11_0um_nom', ckpt_dir='/Users/tomrink/tf_model_sres/run-20220805173619/'):
nda = np.load(in_file)
nda = np.transpose(nda[0, 2, 3, 1])
nn = ESPCN()
out_sr = nn.run_evaluate(nda, param, ckpt_dir)
if out_file is not None:
np.save(out_file, out_sr)
else:
return out_sr
if __name__ == "__main__":
nn = ESPCN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment