Newer
Older
import numpy as np
import xarray as xr
from numpy.lib.stride_tricks import sliding_window_view
import conf
import conf_xr
import preprocess_thresholds as pt
import importlib
# this is used for testing, eventually we want to remove it
importlib.reload(pt)
# ############## GROUP 1 TESTS ############## #
def test_11um(rad, threshold):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(threshold['bt11'])
confidence = np.zeros(rad.shape)
print("11um test running")
# the C code has the line below that I don't quite understand the purpose of.
# It seems to be setting the bit to 0 if the BT value is greater than the midpoint
#
# if (m31 >= dobt11[1]) (void) set_bit(13, pxout.testbits);
# confidence = utils.conf_test(rad, thr)
confidence = conf.conf_test(rad, thr)
return confidence.reshape(radshape)
def test_11um_var(rad, threshold, var_threshold):
print("11um variability test running")
thr = np.array(threshold['11um_var'])
radshape = rad.shape
var = np.zeros((radshape[0], radshape[1], 9))
# chk_spatial2() need to figure out what this is
# np = rg_var.num_small_diffs * 1.0
test = sliding_window_view(np.pad(rad, [1, 1], mode='constant'), (3, 3)) - np.expand_dims(rad, (2, 3))
var[np.abs(test).reshape(radshape[0], radshape[1], 9) < var_threshold['dovar11']] = 1
var = var.sum(axis=2).reshape(np.prod(radshape))
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
confidence[var == 9] = conf.conf_test(rad[var == 9], thr)
return confidence.reshape(radshape)
def test_11_4diff(rad1, rad2, threshold, viirs_data, sg_thresh):
print("11um - 4um difference test running")
radshape = rad1.shape
raddiff = (rad1 - rad2).reshape(np.prod(radshape))
day = np.zeros(radshape)
day[viirs_data.solar_zenith <= 85] = 1
day = day.reshape(raddiff.shape)
sunglint = np.zeros(rad1.shape)
sunglint[viirs_data.sunglint_angle <= sg_thresh] = 1
sunglint = sunglint.reshape(raddiff.shape)
thr = np.array(threshold['test11_4lo'])
confidence = np.zeros(raddiff.shape)
# confidence[(day == 1) & (sunglint == 0)] = utils.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
confidence[(day == 1) & (sunglint == 0)] = conf.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
return confidence.reshape(radshape)
def vir_refl_test(rad, threshold, viirs_data):
print('Visible reflectance test running')
thr = threshold['vis_refl_test']
radshape = rad.shape()
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(radshape)
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
cosvza = np.cos(vza*dtr)
coeffs = utils.get_b1_thresholds()
coeffs[:, :3] = coeffs[:, :3] * threshold['b1_bias_adj']
# this quantity is the return of get_b1_thresholds() in the C code
# it's defined here to keep a consistent logic with the original source, for now
irtn = 0
if irtn != 0:
coeffs = thr
coeffs[:, :3] = coeffs[:, :3] * 1/np.power(cosvza, vzcpow)
confidence = conf.conf_test(rad, coeffs)
return confidence.reshape(radshape)
def nir_refl_test(rad, threshold, sunglint_thresholds, viirs_data):
print("NIR reflectance test running")
sza = viirs_data.solar_zenith.values
refang = viirs_data.sunglint_angle.values
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
# Keep in mind that band_n uses MODIS band numbers (i.e. 2=0.86um and 7=2.1um)
# For VIIRS would be 2=M07 (0.865um) and 7=M11 (2.25um)
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
sza = sza.reshape(rad.shape)
vza = vza.reshape(rad.shape)
refang = refang.reshape(rad.shape)
sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds).reshape(rad.shape)
# ref2 [5]
# b2coeffs [4]
# b2mid [1]
# b2bias_adj [1]
# b2lo [1]
# vzcpow [3] (in different place)
cosvza = np.cos(vza*dtr)
coeffs = threshold['b2coeffs']
hicut0 = np.array(coeffs[0] + coeffs[1]*sza + coeffs[2]*np.power(sza, 2) + coeffs[3]*np.power(sza, 3))
hicut0 = (hicut0 * 0.01) + threshold['b2adj']
hicut0 = hicut0 * threshold['b2bias_adj']
midpt0 = hicut0 + (threshold['b2mid'] * threshold['b2bias_adj'])
locut0 = midpt0 + (threshold['b2lo'] * threshold['b2bias_adj'])
thr = np.array([locut0, midpt0, hicut0, threshold['ref2'][3]*np.ones(rad.shape)])
# corr_thr = np.zeros((4, 4))
corr_thr = np.zeros((4, rad.shape[0]))
corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0], vzcpow))
corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0]
for flag in range(1, 4):
if len(refang[sunglint_flag == flag]) > 0:
sunglint_thr = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr)
corr_thr[:3, sunglint_flag == flag] = sunglint_thr[:3, sunglint_flag == flag] * (1./np.power(cosvza[sunglint_flag == flag], vzcpow))
corr_thr[3, sunglint_flag == flag] = sunglint_thr[3, sunglint_flag == flag]
confidence = conf.conf_test(rad, corr_thr)
return confidence.reshape(radshape)
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def vis_nir_ratio_test(rad1, rad2, threshold, sg_threshold):
print("NIR-Visible ratio test running")
if threshold['vis_nir_ratio'][6] == 1:
radshape = rad1.shape
rad1 = rad1.reshape(np.prod(radshape))
rad2 = rad2.reshape(np.prod(radshape))
vrat = rad2/rad1
thresh = np.zeros((7,))
# temp value to avoid linter bitching at me
# eventually we would have the test run in two blocks as:
# confidence[sunglint == 1] = conf.conf_test_dble(vrat[sunglint == 1], sg_threshold['snglnt'])
# confidence[sunglint == 0] = conf.conf_test_dble(vrat[sunglint == 0], threshold['vis_nir_ratio'])
# sunglint needs to be defined somewhere
sunglint = 0
if sunglint:
thresh = threshold['snglnt']
else:
thresh = threshold['vis_nir_ratio']
confidence = conf.conf_test_dble(vrat, thresh)
return confidence.reshape(radshape)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
class CloudMaskTests(object):
def __init__(self, scene, radiance, coefficients):
self.scene = scene
self.coefficients = coefficients
def select_coefficients(self):
pass
def test_G1(self):
pass
def test_G2(self):
pass
def test_G3(self):
pass
def test_G4(self):
pass
def overall_confidence(self):
pass
# old class, doesn't use xarray much
class CloudTests_old:
def __init__(self, scene_ids, scene_name, thresholds):
self.scene = scene_ids
self.scene_name = scene_name
self.idx = np.where(scene_ids[scene_name] == 1)
self.threshold = thresholds[scene_name]
def single_threshold_test(self, test_name, rad, cmin):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(self.threshold[test_name])
confidence = np.zeros(radshape)
if thr[4] == 1:
print('test running')
confidence[self.idx] = conf.conf_test(rad[self.idx], thr)
cmin[self.idx] = np.minimum(cmin[self.idx], confidence[self.idx])
return cmin
def double_threshold_test(self):
pass
# new class to try to use xarray more extensively
class CloudTests:
def __init__(self, data, scene_name, thresholds):
self.data = data
self.scene_name = scene_name
self.thresholds = thresholds

Paolo Veglio
committed
def test_11um(self, band):
confidence = np.ones(self.data.M01.shape)
if self.thresholds[self.scene_name]['11um_Test']['perform'] is True:
confidence = conf.conf_test(data, band)
cmin = np.fmin(cmin, confidence)
return cmin
def single_threshold_test(self, test_name, band, cmin):
if band == 'bad_data':
return cmin
print(f'Running test "{test_name}" for "{self.scene_name}"')
# preproc_thresholds()
if 'thr' in self.thresholds[self.scene_name][test_name]:
thr = np.array(self.thresholds[self.scene_name][test_name]['thr'])
else:
thr = np.array(self.thresholds[self.scene_name][test_name])
thr_xr = xr.Dataset()
if test_name == '11-12um_Cirrus_Test':

Paolo Veglio
committed
thr_xr['threshold'] = pt.preproc(self.data, self.thresholds[self.scene_name], self.scene_name)
thr = np.ones((5,)) # This is only temporary to force the logic of the code
# I need to find a better solution at some point
elif test_name == 'SST_Test':
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((self.data[band].shape[0], self.data[band].shape[1], 5))*thr)

Paolo Veglio
committed
elif test_name == '7.3-11um_BTD_Mid_Level_Cloud_Test':
thr_xr['threshold'] = pt.get_pn_thresholds(self.data, self.thresholds, self.scene_name,
'7.3-11um_BTD_Mid_Level_Cloud_Test')
thr = np.ones((5,))
elif test_name == 'Surface_Temperature_Test':
thr_xr['threshold'] = pt.preproc_surf_temp(self.data, self.thresholds[self.scene_name])
thr = np.ones((5,))

Paolo Veglio
committed
elif (test_name == '11-4um_Oceanic_Stratus_Test' and
self.scene_name in ['Land_Day_Desert', 'Land_Day_Desert_Coast', 'Polar_Day_Desert',
'Polar_Day_Desert_Coast']):
thr = np.array([self.thresholds[self.scene_name][test_name][i] for i in range(8)])
elif test_name == 'NIR_Reflectance_Test':
corr_thr = pt.preproc_nir(self.data, self.thresholds, self.scene_name)
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'), corr_thr)

Paolo Veglio
committed
elif test_name == 'Visible_Reflectance_Test':
thr_xr['threshold'], self.data['M128'] = pt.vis_refl_thresholds(self.data,
self.thresholds,
self.scene_name)

Paolo Veglio
committed
elif test_name == '1.6_2.1um_NIR_Reflectance_Test':
corr_thr = pt.nir_refl(self.data, self.thresholds, self.scene_name)
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'), corr_thr)
thr = np.ones((5,))

Paolo Veglio
committed
elif test_name == '4-12um_BTD_Thin_Cirrus_Test':
thr_xr['threshold'] = pt.get_pn_thresholds(self.data, self.thresholds, self.scene_name,
'4-12um_BTD_Thin_Cirrus_Test')
thr = np.ones((5,))

Paolo Veglio
committed
elif test_name == 'GEMI_Test':
thr_xr['threshold'] = pt.GEMI_test(self.data, self.thresholds, self.scene_name)
thr = np.ones((5,))
elif (test_name == '1.38um_High_Cloud_Test' and self.scene_name in ['Ocean_Day', 'Polar_Ocean_Day']):
thr_xr['threshold'] = pt.test_1_38um_preproc(self.data, self.thresholds, self.scene_name)
thr = np.ones((5,))
else:
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((self.data[band].shape[0], self.data[band].shape[1], 5))*thr)

Paolo Veglio
committed
data = xr.Dataset(self.data, coords=thr_xr)
if test_name == 'SST_Test':
data['sfcdif'] = (('number_of_lines', 'number_of_pixels'),
pt.preproc_sst(data, self.thresholds[self.scene_name][test_name]).values)
band = 'sfcdif'

Paolo Veglio
committed
if test_name == '11um_Variability_Test':
var = pt.var_11um(self.data, self.thresholds)
data['11um_var'] = data.M15
data['11um_var'].values[var != 9] = np.nan

Paolo Veglio
committed
if thr[4] == 1:
print('test running...')
confidence = conf_xr.conf_test(data, band)

Paolo Veglio
committed
cmin = np.fmin(cmin, confidence)
return cmin
def double_threshold_test(self, test_name, band, cmin):
data = self.data
if test_name == '11-4um_BT_Difference_Test':
thr = pt.bt11_4um_preproc(self.data, self.thresholds, self.scene_name)

Paolo Veglio
committed
print('test running...')

Paolo Veglio
committed
confidence = conf.conf_test_dble(data['M15-M13'].values, thr)

Paolo Veglio
committed
confidence = confidence.reshape(data.M01.shape)

Paolo Veglio
committed
if test_name == 'Vis/NIR_Ratio_Test':

Paolo Veglio
committed
print('test running...')

Paolo Veglio
committed
thr_no_sunglint = np.array([self.thresholds[self.scene_name][test_name][i] for i in range(8)])
thr_sunglint = np.array([self.thresholds['Sun_Glint']['snglnt'][i] for i in range(8)])
vrat = data.M07.values/data.M05.values

Paolo Veglio
committed
_dtr = np.pi/180.0
sza = data.sensor_zenith.values
raz = data.relative_azimuth.values
vza = data.sensor_zenith.values
cos_refang = np.sin(vza*_dtr) * np.sin(sza*_dtr) * np.cos(raz*_dtr) + \
np.cos(vza*_dtr) * np.cos(sza*_dtr)
refang = np.arccos(cos_refang) * 180./np.pi
idx = np.nonzero((data.solar_zenith <= 85) & (refang <= data.sunglint_angle))
confidence = conf.conf_test_dble(vrat, thr_no_sunglint)
confidence = confidence.reshape(data.M01.shape)
confidence[idx] = conf.conf_test_dble(vrat[idx], thr_sunglint)
confidence = confidence.reshape(data.M01.shape)

Paolo Veglio
committed
if (test_name == '11-4um_Oceanic_Stratus_Test' and
self.scene_name in ['Land_Day_Desert', 'Land_Day_Desert_Coast', 'Polar_Day_Desert',
'Polar_Day_Desert_Coast']):
thr = np.array([self.thresholds[self.scene_name][test_name][i] for i in range(8)])
print('test running...')

Paolo Veglio
committed
confidence = conf.conf_test_dble(data['M15-M16'].values, thr)
confidence = confidence.reshape(data.M01.shape)
cmin = np.fmin(cmin, confidence)
return cmin
def preproc_thresholds(thresholds, data):
thr = np.array(thresholds)
thr_xr = xr.Dataset()
thr_xr['tresholds'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((data['M01'].shape[0], data['M01'].shape[1], 5))*thr)
nl_sfct1 = thresholds['Land_Night']['Surface_Temperature_Test'][0]
# nl_sfct2 = thresholds['Land_Night']['Surface_Temperature_Test'][1]
# nlsfct_pfm = thresholds['Land_Night']['Surface_Temperature_Test'][2]
nl_df1 = thresholds['Land_Night']['Surface_Temperature_Test_difference'][0:2]
nl_df2 = thresholds['Land_Night']['Surface_Temperature_Test_difference'][2:]
# df1 = data.M15 - data.M16
# df2 = data.M15 - data.M13
thr_xr = thr_xr.where(data.desert != 1, nl_sfct1)
thr_xr = thr_xr.where((data['M15-M16'] > nl_df1[0]) |
((data['M15-M16'] < nl_df1[0]) &
((data['M15-M13'] <= nl_df2[0]) | (data['M15-M13'] >= nl_df2[1]))),
nl_sfct1[0])
data = xr.Dataset(data, coords=thr_xr)
return data
def single_threshold_test(test, rad, threshold):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(threshold[test])
confidence = np.zeros(rad.shape)
if thr[4] == 1:
print(f"{test} test running")
# the C code has the line below that I don't quite understand the purpose of.
# It seems to be setting the bit to 0 if the BT value is greater than the midpoint
#
# if (m31 >= dobt11[1]) (void) set_bit(13, pxout.testbits);
# confidence = utils.conf_test(rad, thr)
confidence = conf.conf_test(rad, thr)
return confidence.reshape(radshape)
def test():
rad = np.random.randint(50, size=[4, 8])
# coeffs = [5, 42, 20, 28, 15, 35, 1]
# coeffs = [20, 28, 5, 42, 15, 35, 1]
coeffs = [35, 15, 20, 1, 1]
# confidence = conf_test_dble(rad, coeffs)