Newer
Older
import numpy as np
from numpy.lib.stride_tricks import sliding_window_view
import conf
def test_11um(rad, threshold):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(threshold['bt11'])
confidence = np.zeros(rad.shape)
print("11um test running")
# the C code has the line below that I don't quite understand the purpose of.
# It seems to be setting the bit to 0 if the BT value is greater than the midpoint
#
# if (m31 >= dobt11[1]) (void) set_bit(13, pxout.testbits);
# confidence = utils.conf_test(rad, thr)
confidence = conf.conf_test(rad, thr)
return confidence.reshape(radshape)
def test_11um_var(rad, threshold, var_threshold):
print("11um variability test running")
thr = np.array(threshold['11um_var'])
radshape = rad.shape
var = np.zeros((radshape[0], radshape[1], 9))
# chk_spatial2() need to figure out what this is
# np = rg_var.num_small_diffs * 1.0
test = sliding_window_view(np.pad(rad, [1, 1], mode='constant'), (3, 3)) - np.expand_dims(rad, (2, 3))
var[np.abs(test).reshape(radshape[0], radshape[1], 9) < var_threshold['dovar11']] = 1
var = var.sum(axis=2).reshape(np.prod(radshape))
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
confidence[var == 9] = conf.conf_test(rad[var == 9], thr)
return confidence.reshape(radshape)
def test_11_4diff(rad1, rad2, threshold, viirs_data, sg_thresh):
print("11um - 4um difference test running")
radshape = rad1.shape
raddiff = (rad1 - rad2).reshape(np.prod(radshape))
day = np.zeros(radshape)
day[viirs_data.solar_zenith <= 85] = 1
day = day.reshape(raddiff.shape)
sunglint = np.zeros(rad1.shape)
sunglint[viirs_data.sunglint_angle <= sg_thresh] = 1
sunglint = sunglint.reshape(raddiff.shape)
thr = np.array(threshold['test11_4lo'])
confidence = np.zeros(raddiff.shape)
# confidence[(day == 1) & (sunglint == 0)] = utils.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
confidence[(day == 1) & (sunglint == 0)] = conf.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
return confidence.reshape(radshape)
def vir_refl_test(rad, threshold, viirs_data):
print('Visible reflectance test running')
thr = threshold['vis_refl_test']
radshape = rad.shape()
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(radshape)
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
cosvza = np.cos(vza*dtr)
coeffs = utils.get_b1_thresholds()
coeffs[:, :3] = coeffs[:, :3] * threshold['b1_bias_adj']
# this quantity is the return of get_b1_thresholds() in the C code
# it's defined here to keep a consistent logic with the original source, for now
irtn = 0
if irtn != 0:
coeffs = thr
coeffs[:, :3] = coeffs[:, :3] * 1/np.power(cosvza, vzcpow)
confidence = conf.conf_test(rad, coeffs)
return confidence.reshape(radshape)
def nir_refl_test(rad, threshold, sunglint_thresholds, viirs_data):
print("NIR reflectance test running")
sza = viirs_data.solar_zenith.values
refang = viirs_data.sunglint_angle.values
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
# Keep in mind that band_n uses MODIS band numbers (i.e. 2=0.86um and 7=2.1um)
# For VIIRS would be 2=M07 (0.865um) and 7=M11 (2.25um)
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
sza = sza.reshape(rad.shape)
vza = vza.reshape(rad.shape)
refang = refang.reshape(rad.shape)
sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds).reshape(rad.shape)
# ref2 [5]
# b2coeffs [4]
# b2mid [1]
# b2bias_adj [1]
# b2lo [1]
# vzcpow [3] (in different place)
cosvza = np.cos(vza*dtr)
coeffs = threshold['b2coeffs']
hicut0 = np.array(coeffs[0] + coeffs[1]*sza + coeffs[2]*np.power(sza, 2) + coeffs[3]*np.power(sza, 3))
hicut0 = (hicut0 * 0.01) + threshold['b2adj']
hicut0 = hicut0 * threshold['b2bias_adj']
midpt0 = hicut0 + (threshold['b2mid'] * threshold['b2bias_adj'])
locut0 = midpt0 + (threshold['b2lo'] * threshold['b2bias_adj'])
thr = np.array([locut0, midpt0, hicut0, threshold['ref2'][3]*np.ones(rad.shape)])
# corr_thr = np.zeros((4, 4))
corr_thr = np.zeros((4, rad.shape[0]))
corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0], vzcpow))
corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0]
for flag in range(1, 4):
if len(refang[sunglint_flag == flag]) > 0:
sunglint_thr = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr)
corr_thr[:3, sunglint_flag == flag] = sunglint_thr[:3, sunglint_flag == flag] * (1./np.power(cosvza[sunglint_flag == flag], vzcpow))
corr_thr[3, sunglint_flag == flag] = sunglint_thr[3, sunglint_flag == flag]
confidence = conf.conf_test(rad, corr_thr)
return confidence.reshape(radshape)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def vis_nir_ratio_test(rad1, rad2, threshold, sg_threshold):
print("NIR-Visible ratio test running")
if threshold['vis_nir_ratio'][6] == 1:
radshape = rad1.shape
rad1 = rad1.reshape(np.prod(radshape))
rad2 = rad2.reshape(np.prod(radshape))
vrat = rad2/rad1
thresh = np.zeros((7,))
# temp value to avoid linter bitching at me
# eventually we would have the test run in two blocks as:
# confidence[sunglint == 1] = conf.conf_test_dble(vrat[sunglint == 1], sg_threshold['snglnt'])
# confidence[sunglint == 0] = conf.conf_test_dble(vrat[sunglint == 0], threshold['vis_nir_ratio'])
# sunglint needs to be defined somewhere
sunglint = 0
if sunglint:
thresh = threshold['snglnt']
else:
thresh = threshold['vis_nir_ratio']
confidence = conf.conf_test_dble(vrat, thresh)
return confidence.reshape(radshape)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
class CloudMaskTests(object):
def __init__(self, scene, radiance, coefficients):
self.scene = scene
self.coefficients = coefficients
def select_coefficients(self):
pass
def test_G1(self):
pass
def test_G2(self):
pass
def test_G3(self):
pass
def test_G4(self):
pass
def overall_confidence(self):
pass
def test():
rad = np.random.randint(50, size=[4, 8])
# coeffs = [5, 42, 20, 28, 15, 35, 1]
# coeffs = [20, 28, 5, 42, 15, 35, 1]
coeffs = [35, 15, 20, 1, 1]
# confidence = conf_test_dble(rad, coeffs)