Skip to content
Snippets Groups Projects
Commit 51a158f9 authored by Paolo Veglio's avatar Paolo Veglio
Browse files

reworked the single threshold function to work better with xarray

parent 1bc869dc
No related branches found
No related tags found
No related merge requests found
import numpy as np
import xarray as xr
def test(flipped=False):
bt = np.arange(265, 275)
if flipped is False:
thr = np.array([267, 270, 273, 1, 1])
else:
thr = np.array([273, 270, 267, 1, 1])
c = conf_test(bt, thr)
print(c)
def test_dble(flipped=False):
bt = np.arange(260, 282)
if flipped is False:
thr = np.array([264, 267, 270, 273, 276, 279, 1, 1])
else:
thr = np.array([279, 276, 273, 270, 267, 264, 1, 1])
c = conf_test_dble(bt, thr)
print(c)
def conf_test(data, band):
'''
Assuming a linear function between min and max confidence level, the plot below shows
how the confidence (y axis) is computed as function of radiance (x axis).
This case illustrates alpha < gamma, obviously in case alpha > gamma, the plot would be
flipped.
gamma
c 1 ________
o | /
n | /
f | /
i | beta /
d 1/2 |....../
e | /
n | /
c | /
e 0________/
| alpha
--------- radiance ---------->
'''
hicut = data.threshold[:, :, 2]
beta = data.threshold[:, :, 1]
locut = data.threshold[:, :, 0]
power = data.threshold[:, :, 3]
coeff = np.power(2, (power - 1))
gamma = data.threshold.where(hicut > locut, data.threshold[:, :, 0])[:, :, 2]
alpha = data.threshold.where(hicut > locut, data.threshold[:, :, 2])[:, :, 0]
flipped = xr.zeros_like(data[band]).where(hicut > locut, 1)
# Rad between alpha and beta
range_ = 2. * (beta - alpha)
s1 = (data[band].values - alpha)/range_
conf_tmp1 = (coeff * np.power(s1, power)).where((data[band] <= beta) & (flipped == 0))
conf_tmp2 = (1.0 - coeff * np.power(s1, power)).where((data[band] <= beta) & (flipped == 1))
conf_tmp12 = conf_tmp1.where(flipped == 0, conf_tmp2)
# Rad between beta and gamma
range_ = 2. * (beta - gamma)
s1 = (data[band].values - gamma)/range_
conf_tmp3 = (1.0 - coeff * np.power(s1, power)).where((data[band] <= beta) & (flipped == 0))
conf_tmp4 = (coeff * np.power(s1, power)).where((data[band] <= beta) & (flipped == 1))
conf_tmp34 = conf_tmp3.where(flipped == 0, conf_tmp4)
confidence = conf_tmp12.where(data[band] <= beta, conf_tmp34)
confidence = confidence.where(confidence > 0, 0)
confidence = confidence.where(confidence < 1, 1)
return confidence
def conf_test_dble(rad, coeffs):
# '''
# gamma1 gamma2
# c 1_______ ________
# o | \ /
# n | \ /
# f | \ /
# i | \ beta1 beta2 /
# d 1/2 \....| |...../
# e | \ /
# n | \ /
# c | \ /
# e 0 \_____________/
# | alpha1 alpha2
# --------------------- radiance ------------------------->
# '''
coeffs = np.array(coeffs)
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
alpha1, gamma1 = np.empty(rad.shape), np.empty(rad.shape)
alpha2, gamma2 = np.empty(rad.shape), np.empty(rad.shape)
if coeffs.ndim == 1:
coeffs = np.full((rad.shape[0], 7), coeffs[:7]).T
gamma1 = coeffs[0, :]
beta1 = coeffs[1, :]
alpha1 = coeffs[2, :]
alpha2 = coeffs[3, :]
beta2 = coeffs[4, :]
gamma2 = coeffs[5, :]
power = coeffs[6, :]
coeff = np.power(2, (power - 1))
# radshape = rad.shape
# rad = rad.reshape((rad.shape[0]*rad.shape[1]))
# ## Find if interval between inner cutoffs passes or fails test
# Inner region fails test
# Value is within range of lower set of limits
range_ = 2. * (beta1 - alpha1)
s1 = (rad - alpha1) / range_
idx = np.nonzero((rad <= alpha1) & (rad >= beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2. * (beta1 - gamma1)
s1 = (rad - gamma1) / range_
idx = np.nonzero((rad >= gamma1) & (rad < beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
# Value is within range of upper set of limits
range_ = 2. * (beta2 - alpha2)
s1 = (rad - alpha2) / range_
idx = np.nonzero((rad > alpha1) & (rad <= beta2) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2. * (beta2 - gamma2)
s1 = (rad - gamma2) / range_
idx = np.nonzero((rad > alpha1) & (rad > beta2) & (alpha1 - gamma1 > 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
# Check for value beyond function range
confidence[(alpha1 - gamma1 > 0) & (rad > alpha1) & (rad < alpha2)] = 0
confidence[(alpha1 - gamma1 > 0) & ((rad < gamma1) | (rad > gamma2))] = 1
###
# Inner region passes test
print("I NEED TO REVIEW THIS TO WRITE IT MORE CLEARLY")
# FOR NOW ALPHA AND GAMMA ARE SWITCHED BECAUSE OF HOW THE ARRAYS ARE DEFINED.
# THINK ON HOW THIS COULD BE WRITTEN SO THAT IT'S EASIER TO UNDERSTAND (AND DEBUG)
# Value is within range of lower set of limits
range_ = 2 * (beta1 - alpha1)
s1 = (rad - alpha1) / range_
idx = np.nonzero((rad > alpha1) & (rad <= gamma1) & (rad <= beta1) & (alpha1 - gamma1 <= 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2 * (beta1 - gamma1)
s1 = (rad - gamma1) / range_
idx = np.nonzero((rad > alpha1) & (rad <= gamma1) & (rad > beta1) & (alpha1 - gamma1 <= 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Values is within range of upper set of limits
range_ = 2 * (beta2 - alpha2)
s1 = (rad - alpha2) / range_
idx = np.nonzero((rad > gamma2) & (rad < alpha2) & (rad >= beta2) & (alpha1 - gamma1 <= 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2 * (beta2 - gamma2)
s1 = (rad - gamma2) / range_
idx = np.nonzero((rad > gamma2) & (rad < alpha2) & (rad < beta2) & (alpha1 - gamma1 <= 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
confidence[(alpha1 - gamma1 <= 0) & ((rad > gamma1) | (rad < gamma2))] = 0
confidence[(alpha1 - gamma1 <= 0) & (rad <= alpha1) & (rad >= alpha2)] = 1
confidence[confidence > 1] = 1
confidence[confidence < 0] = 0
return confidence
if __name__ == "__main__":
test_dble()
import ruamel_yaml as yml
import numpy as np
# import xarray as xr
import xarray as xr
from glob import glob
import read_data as rd
from tests import CloudTests
import scene as scn
from tests import CloudTests_new
# import tests
import ocean_day_tests as odt
......@@ -68,20 +69,47 @@ def main(*, data_path=_datapath, mod02=_fname_mod02, mod03=_fname_mod03,
viirs_data = rd.get_data(file_names, sunglint_angle)
# scene_xr = xr.Dataset()
# for s in scn._scene_list:
# scene_xr[s] = (('number_of_lines', 'number_of_pixels'), scn.scene_id[s])
# scene_xr['latitude'] = viirs_xr.latitude
# scene_xr['longitude'] = viirs_xr.longitude
#
# viirs_data = xr.Dataset(viirs_xr, coords=scene_xr)
# viirs_data.drop_vars(['latitude', 'longitude'])
cmin_G1 = np.ones(viirs_data.M01.shape)
cmin_test = {'Ocean_Day': np.ones(viirs_data.M01.shape),
'Polar_Ocean_Day': np.ones(viirs_data.M01.shape),
'Polar_Ocean_Night': np.ones(viirs_data.M01.shape)
}
cmin2 = np.ones(viirs_data.M01.shape)
cmin3 = np.ones(viirs_data.M01.shape)
cmin4 = np.ones(viirs_data.M01.shape)
Ocean_Day = CloudTests(viirs_data, 'Ocean_Day', thresholds)
Polar_Ocean_Day = CloudTests(viirs_data, 'Polar_Ocean_Day', thresholds)
Polar_Ocean_Night = CloudTests(viirs_data, 'Polar_Ocean_Night', thresholds)
cmin_G1 = Ocean_Day.single_threshold_test('11BT_Test', viirs_data.M15.values, cmin_G1)
cmin_G1 = Polar_Ocean_Day.single_threshold_test('11BT_Test', viirs_data.M15.values, cmin_G1)
cmin_G1 = Polar_Ocean_Night.single_threshold_test('11BT_Test', viirs_data.M15.values, cmin_G1)
Ocean_Day = CloudTests_new(viirs_data, 'Ocean_Day', thresholds)
Polar_Ocean_Day = CloudTests_new(viirs_data, 'Polar_Ocean_Day', thresholds)
Polar_Ocean_Night = CloudTests_new(viirs_data, 'Polar_Ocean_Night', thresholds)
# Land_Day = CloudTests(viirs_data, 'Land_Day', thresholds)
# Night_Snow = CloudTests(viirs_data, 'Night_Snow', thresholds)
# Day_Snow = CloudTests(viirs_data, 'Day_Snow', thresholds)
# Land_Night = CloudTests(viirs_data, 'Land_Night', thresholds)
# Land_Day_Coast = CloudTests(viirs_data, 'Land_Day_Coast', thresholds)
# Land_Day_Desert = CloudTests(viirs_data, 'Land_Day_Desert', thresholds)
# Land_Day_Desert_Coast = CloudTests(viirs_data, 'Land_Day_Desert_Coast', thresholds)
# 11um BT Test
cmin_test['Ocean_Day'] = Ocean_Day.single_threshold_test('11um_Test', 'M15', cmin_G1)
cmin_test['Polar_Ocean_Day'] = Polar_Ocean_Day.single_threshold_test('11um_Test', 'M15', cmin_G1)
cmin_test['Polar_Ocean_Night'] = Polar_Ocean_Night.single_threshold_test('11um_Test', 'M15', cmin_G1)
return cmin_test
'''
# CO2 High Cloud Test
# cmin_G1 = Land_Day
# 11-12um BT Difference
cmin_G1 = Ocean_Day.single_threshold_test('11-12BT_diff',
viirs_data.M15.values-viirs_data.M16.values,
cmin_G1)
......@@ -146,6 +174,7 @@ def main(*, data_path=_datapath, mod02=_fname_mod02, mod03=_fname_mod03,
lat=viirs_data.latitude.values, lon=viirs_data.longitude.values)
return confidence
'''
def test_main():
......
......@@ -7,10 +7,10 @@ import read_data as rd
import ancillary_data as anc
# lsf: land sea flag
_scene_list = ['ocean_day', 'ocean_night', 'land_day', 'land_night', 'snow_day', 'snow_night', 'coast_day',
'desert_day', 'antarctic_day', 'polar_day_snow', 'polar_day_desert', 'polar_day_ocean',
'polar_day_desert_coast', 'polar_day_coast', 'polar_day_land', 'polar_night_snow',
'polar_night_land', 'polar_night_ocean', 'land_day_desert_coast']
_scene_list = ['Ocean_Day', 'Ocean_Night', 'Land_Day', 'Land_Night', 'Snow_Day', 'Snow_Night', 'Coast_Day',
'Desert_Day', 'Antarctic_Day', 'Polar_Day_Snow', 'Polar_Day_Desert', 'Polar_Day_Ocean',
'Polar_Day_Desert_Coast', 'Polar_Day_Coast', 'Polar_Day_Land', 'Polar_Night_Snow',
'Polar_Night_Land', 'Polar_Night_Ocean', 'Land_Day_Desert_Coast', 'Land_Day_Coast']
_flags = ['day', 'night', 'land', 'coast', 'sh_lake', 'sh_ocean', 'water', 'polar', 'sunglint',
'greenland', 'high_elevation', 'antarctica', 'desert', 'visusd', 'vrused', 'map_snow', 'map_ice',
'ndsi_snow', 'snow', 'ice', 'new_zealand', 'uniform']
......@@ -23,7 +23,7 @@ _rtd = 180./np.pi
# I'm defining here the flags for difference scenes. Eventually I want to find a better way of doing this
land = 1
#coast = .2
# coast = .2
sh_lake = .3
sh_ocean = .4
water = 5
......@@ -235,13 +235,13 @@ def find_scene(data, sunglint_angle):
perm_ice_fraction = data['geos_landicefr']
ice_fraction = data['geos_icefr']
idx = np.nonzero((snow_fraction > 0.10) & (snow_fraction <= 1.0))
idx = tuple(np.nonzero((snow_fraction > 0.10) & (snow_fraction <= 1.0)))
scene_flag['map_snow'][idx] = 1
idx = np.nonzero((perm_ice_fraction > 0.10) & (perm_ice_fraction <= 1.0))
idx = tuple(np.nonzero((perm_ice_fraction > 0.10) & (perm_ice_fraction <= 1.0)))
scene_flag['map_snow'][idx] = 1
idx = np.nonzero((ice_fraction > 0.10) & (ice_fraction <= 1.0))
idx = tuple(np.nonzero((ice_fraction > 0.10) & (ice_fraction <= 1.0)))
scene_flag['map_ice'][idx] = 1
# need to define this function and write this block better
......@@ -316,118 +316,118 @@ def scene_id(scene_flag):
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0) &
(scene_flag['polar'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['coast'] == 0) & (scene_flag['desert'] == 0))
scene['ocean_day'][idx] = 1
scene['Ocean_Day'][idx] = 1
# Ocean Night
idx = np.nonzero((scene_flag['water'] == 1) & (scene_flag['night'] == 1) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0) &
(scene_flag['polar'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['coast'] == 0) & (scene_flag['desert'] == 0))
scene['ocean_night'][idx] = 1
scene['Ocean_Night'][idx] = 1
# Land Day
idx = np.nonzero((scene_flag['land'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0) &
(scene_flag['polar'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['coast'] == 0) & (scene_flag['desert'] == 0))
scene['land_day'][idx] = 1
scene['Land_Day'][idx] = 1
# Land Night
idx = np.nonzero((scene_flag['land'] == 1) & (scene_flag['night'] == 1) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0) &
(scene_flag['polar'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['coast'] == 0))
scene['land_night'][idx] = 1
scene['Land_Night'][idx] = 1
# Snow Day
idx = np.nonzero((scene_flag['day'] == 1) &
((scene_flag['ice'] == 1) | (scene_flag['snow'] == 1)) &
(scene_flag['polar']) & (scene_flag['antarctica']))
scene['snow_day'][idx] = 1
(scene_flag['polar'] == 1) & (scene_flag['antarctica'] == 1))
scene['Snow_Day'][idx] = 1
# Snow Night
idx = np.nonzero((scene_flag['night'] == 1) &
((scene_flag['ice'] == 1) | (scene_flag['snow'] == 1)) &
(scene_flag['polar']) & (scene_flag['antarctica']))
scene['snow_night'][idx] = 1
(scene_flag['polar'] == 1) & (scene_flag['antarctica'] == 1))
scene['Snow_Night'][idx] = 1
# Land Day Coast
idx = np.nonzero((scene_flag['land'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['coast'] == 1) & (scene_flag['desert'] == 0) &
(scene_flag['polar'] == 0) & (scene_flag['antarctica'] == 0))
scene['land_day_coast'][idx] = 1
scene['Land_Day_Coast'][idx] = 1
# Land Day Desert
idx = np.nonzero((scene_flag['land'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['desert'] == 1) & (scene_flag['coast'] == 0) &
(scene_flag['polar'] == 0) & (scene_flag['antarctica'] == 0))
scene['desert_day'][idx] = 1
scene['Desert_Day'][idx] = 1
# Land Day Desert Coast
idx = np.nonzero((scene_flag['land'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['desert'] == 1) & (scene_flag['coast'] == 1) &
(scene_flag['polar'] == 0) & (scene_flag['antarctica'] == 0))
scene['land_day_desert_coast'][idx] = 1
scene['Land_Day_Desert_Coast'][idx] = 1
# Antarctic Day
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['antarctica'] == 1) & (scene_flag['land'] == 1))
scene['antarctic_day'][idx] = 1
scene['Antarctic_Day'][idx] = 1
# Polar Day Snow
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['day'] == 1) &
((scene_flag['snow'] == 1) | (scene_flag['ice'] == 1)) &
(scene_flag['antarctica'] == 0))
scene['polar_day_snow'][idx] = 1
scene['Polar_Day_Snow'][idx] = 1
# Polar Day Desert
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['land'] == 1) & (scene_flag['desert'] == 1) &
(scene_flag['coast'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0))
scene['polar_day_desert'][idx] = 1
scene['Polar_Day_Desert'][idx] = 1
# Polar Day Desert Coast
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['land'] == 1) & (scene_flag['desert'] == 1) &
(scene_flag['coast'] == 1) & (scene_flag['antarctica'] == 0) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0))
scene['polar_day_desert_coast'][idx] = 1
scene['Polar_Day_Desert_Coast'][idx] = 1
# Polar Day Coast
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['land'] == 1) & (scene_flag['coast'] == 1)
(scene_flag['land'] == 1) & (scene_flag['coast'] == 1) &
(scene_flag['desert'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0))
scene['polar_day_coast'][idx] = 1
scene['Polar_Day_Coast'][idx] = 1
# Polar Day Land
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['land'] == 1) & (scene_flag['coast'] == 0)
(scene_flag['land'] == 1) & (scene_flag['coast'] == 0) &
(scene_flag['desert'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0))
scene['polar_day_land'][idx] = 1
scene['Polar_Day_Land'][idx] = 1
# Polar Day Ocean
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['day'] == 1) &
(scene_flag['water'] == 1) & (scene_flag['coast'] == 0)
(scene_flag['water'] == 1) & (scene_flag['coast'] == 0) &
(scene_flag['desert'] == 0) & (scene_flag['antarctica'] == 0) &
(scene_flag['ice'] == 0) & (scene_flag['snow'] == 0))
scene['polar_day_ocean'][idx] = 1
scene['Polar_Day_Ocean'][idx] = 1
# Polar Night Snow
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['night'] == 1) &
((scene_flag['snow'] == 1) | (scene_flag['ice'] == 1)))
scene['polar_night_snow'][idx] = 1
scene['Polar_Night_Snow'][idx] = 1
# Polar Night Land
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['night'] == 1) &
(scene_flag['land'] == 1))
scene['polar_night_land'][idx] = 1
scene['Polar_Night_Land'][idx] = 1
# Polar Night Ocean
idx = np.nonzero((scene_flag['polar'] == 1) & (scene_flag['night'] == 1) &
(scene_flag['water'] == 1))
scene['polar_night_ocean'][idx] = 1
scene['Polar_Night_Ocean'][idx] = 1
return scene
import numpy as np
import xarray as xr
from numpy.lib.stride_tricks import sliding_window_view
import utils
import conf
import conf_xr
# ############## GROUP 1 TESTS ############## #
......@@ -224,18 +226,50 @@ class CloudTests:
rad = rad.reshape(np.prod(radshape))
thr = np.array(self.threshold[test_name])
confidence = np.zeros(rad.shape)
confidence = np.zeros(radshape)
if thr[4] == 1:
print('test running')
confidence = conf.conf_test(rad, thr)
confidence[self.idx] = conf.conf_test(rad[self.idx], thr)
return np.minimum(cmin, confidence)
cmin[self.idx] = np.minimum(cmin[self.idx], confidence[self.idx])
return cmin
def double_threshold_test(self):
pass
# new class to try to use xarray more extensively
class CloudTests_new:
def __init__(self, data, scene_name, thresholds):
self.data = data
self.scene_name = scene_name
self.thresholds = thresholds
def single_threshold_test(self, test_name, band, cmin):
# preproc_thresholds()
thr = np.array(self.thresholds[self.scene_name][test_name])
thr_xr = xr.Dataset()
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((self.data[band].shape[0], self.data[band].shape[1], 5))*thr)
data = xr.Dataset(self.data, coords=thr_xr)
if thr[4] == 1:
print('test running')
confidence = conf_xr.conf_test(data, band)
cmin = np.fmin(cmin, confidence)
return cmin
# single_threshold_test('11BT', 'M15', cmin)
# single_threshold_test('12-11BT', 'M16-M15', cmin)
# single_threshold_test('12BT', 'M16', cmin)
def single_threshold_test(test, rad, threshold):
radshape = rad.shape
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment