Newer
Older
import numpy as np
import xarray as xr
from numpy.lib.stride_tricks import sliding_window_view
import conf
import conf_xr
# ############## GROUP 1 TESTS ############## #
def test_11um(rad, threshold):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(threshold['bt11'])
confidence = np.zeros(rad.shape)
print("11um test running")
# the C code has the line below that I don't quite understand the purpose of.
# It seems to be setting the bit to 0 if the BT value is greater than the midpoint
#
# if (m31 >= dobt11[1]) (void) set_bit(13, pxout.testbits);
# confidence = utils.conf_test(rad, thr)
confidence = conf.conf_test(rad, thr)
return confidence.reshape(radshape)
def test_11um_var(rad, threshold, var_threshold):
print("11um variability test running")
thr = np.array(threshold['11um_var'])
radshape = rad.shape
var = np.zeros((radshape[0], radshape[1], 9))
# chk_spatial2() need to figure out what this is
# np = rg_var.num_small_diffs * 1.0
test = sliding_window_view(np.pad(rad, [1, 1], mode='constant'), (3, 3)) - np.expand_dims(rad, (2, 3))
var[np.abs(test).reshape(radshape[0], radshape[1], 9) < var_threshold['dovar11']] = 1
var = var.sum(axis=2).reshape(np.prod(radshape))
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
confidence[var == 9] = conf.conf_test(rad[var == 9], thr)
return confidence.reshape(radshape)
def test_11_4diff(rad1, rad2, threshold, viirs_data, sg_thresh):
print("11um - 4um difference test running")
radshape = rad1.shape
raddiff = (rad1 - rad2).reshape(np.prod(radshape))
day = np.zeros(radshape)
day[viirs_data.solar_zenith <= 85] = 1
day = day.reshape(raddiff.shape)
sunglint = np.zeros(rad1.shape)
sunglint[viirs_data.sunglint_angle <= sg_thresh] = 1
sunglint = sunglint.reshape(raddiff.shape)
thr = np.array(threshold['test11_4lo'])
confidence = np.zeros(raddiff.shape)
# confidence[(day == 1) & (sunglint == 0)] = utils.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
confidence[(day == 1) & (sunglint == 0)] = conf.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
return confidence.reshape(radshape)
def vir_refl_test(rad, threshold, viirs_data):
print('Visible reflectance test running')
thr = threshold['vis_refl_test']
radshape = rad.shape()
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(radshape)
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
cosvza = np.cos(vza*dtr)
coeffs = utils.get_b1_thresholds()
coeffs[:, :3] = coeffs[:, :3] * threshold['b1_bias_adj']
# this quantity is the return of get_b1_thresholds() in the C code
# it's defined here to keep a consistent logic with the original source, for now
irtn = 0
if irtn != 0:
coeffs = thr
coeffs[:, :3] = coeffs[:, :3] * 1/np.power(cosvza, vzcpow)
confidence = conf.conf_test(rad, coeffs)
return confidence.reshape(radshape)
def nir_refl_test(rad, threshold, sunglint_thresholds, viirs_data):
print("NIR reflectance test running")
sza = viirs_data.solar_zenith.values
refang = viirs_data.sunglint_angle.values
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
# Keep in mind that band_n uses MODIS band numbers (i.e. 2=0.86um and 7=2.1um)
# For VIIRS would be 2=M07 (0.865um) and 7=M11 (2.25um)
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
sza = sza.reshape(rad.shape)
vza = vza.reshape(rad.shape)
refang = refang.reshape(rad.shape)
sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds).reshape(rad.shape)
# ref2 [5]
# b2coeffs [4]
# b2mid [1]
# b2bias_adj [1]
# b2lo [1]
# vzcpow [3] (in different place)
cosvza = np.cos(vza*dtr)
coeffs = threshold['b2coeffs']
hicut0 = np.array(coeffs[0] + coeffs[1]*sza + coeffs[2]*np.power(sza, 2) + coeffs[3]*np.power(sza, 3))
hicut0 = (hicut0 * 0.01) + threshold['b2adj']
hicut0 = hicut0 * threshold['b2bias_adj']
midpt0 = hicut0 + (threshold['b2mid'] * threshold['b2bias_adj'])
locut0 = midpt0 + (threshold['b2lo'] * threshold['b2bias_adj'])
thr = np.array([locut0, midpt0, hicut0, threshold['ref2'][3]*np.ones(rad.shape)])
# corr_thr = np.zeros((4, 4))
corr_thr = np.zeros((4, rad.shape[0]))
corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0], vzcpow))
corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0]
for flag in range(1, 4):
if len(refang[sunglint_flag == flag]) > 0:
sunglint_thr = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr)
corr_thr[:3, sunglint_flag == flag] = sunglint_thr[:3, sunglint_flag == flag] * (1./np.power(cosvza[sunglint_flag == flag], vzcpow))
corr_thr[3, sunglint_flag == flag] = sunglint_thr[3, sunglint_flag == flag]
confidence = conf.conf_test(rad, corr_thr)
return confidence.reshape(radshape)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def vis_nir_ratio_test(rad1, rad2, threshold, sg_threshold):
print("NIR-Visible ratio test running")
if threshold['vis_nir_ratio'][6] == 1:
radshape = rad1.shape
rad1 = rad1.reshape(np.prod(radshape))
rad2 = rad2.reshape(np.prod(radshape))
vrat = rad2/rad1
thresh = np.zeros((7,))
# temp value to avoid linter bitching at me
# eventually we would have the test run in two blocks as:
# confidence[sunglint == 1] = conf.conf_test_dble(vrat[sunglint == 1], sg_threshold['snglnt'])
# confidence[sunglint == 0] = conf.conf_test_dble(vrat[sunglint == 0], threshold['vis_nir_ratio'])
# sunglint needs to be defined somewhere
sunglint = 0
if sunglint:
thresh = threshold['snglnt']
else:
thresh = threshold['vis_nir_ratio']
confidence = conf.conf_test_dble(vrat, thresh)
return confidence.reshape(radshape)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
class CloudMaskTests(object):
def __init__(self, scene, radiance, coefficients):
self.scene = scene
self.coefficients = coefficients
def select_coefficients(self):
pass
def test_G1(self):
pass
def test_G2(self):
pass
def test_G3(self):
pass
def test_G4(self):
pass
def overall_confidence(self):
pass
class CloudTests:
def __init__(self, scene_ids, scene_name, thresholds):
self.scene = scene_ids
self.scene_name = scene_name
self.idx = np.where(scene_ids[scene_name] == 1)
self.threshold = thresholds[scene_name]
def single_threshold_test(self, test_name, rad, cmin):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(self.threshold[test_name])
confidence = np.zeros(radshape)
if thr[4] == 1:
print('test running')
confidence[self.idx] = conf.conf_test(rad[self.idx], thr)
cmin[self.idx] = np.minimum(cmin[self.idx], confidence[self.idx])
return cmin
def double_threshold_test(self):
pass
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# new class to try to use xarray more extensively
class CloudTests_new:
def __init__(self, data, scene_name, thresholds):
self.data = data
self.scene_name = scene_name
self.thresholds = thresholds
def single_threshold_test(self, test_name, band, cmin):
# preproc_thresholds()
thr = np.array(self.thresholds[self.scene_name][test_name])
thr_xr = xr.Dataset()
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((self.data[band].shape[0], self.data[band].shape[1], 5))*thr)
data = xr.Dataset(self.data, coords=thr_xr)
if thr[4] == 1:
print('test running')
confidence = conf_xr.conf_test(data, band)
cmin = np.fmin(cmin, confidence)
return cmin
# single_threshold_test('11BT', 'M15', cmin)
# single_threshold_test('12-11BT', 'M16-M15', cmin)
# single_threshold_test('12BT', 'M16', cmin)
def single_threshold_test(test, rad, threshold):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(threshold[test])
confidence = np.zeros(rad.shape)
if thr[4] == 1:
print(f"{test} test running")
# the C code has the line below that I don't quite understand the purpose of.
# It seems to be setting the bit to 0 if the BT value is greater than the midpoint
#
# if (m31 >= dobt11[1]) (void) set_bit(13, pxout.testbits);
# confidence = utils.conf_test(rad, thr)
confidence = conf.conf_test(rad, thr)
return confidence.reshape(radshape)
def test():
rad = np.random.randint(50, size=[4, 8])
# coeffs = [5, 42, 20, 28, 15, 35, 1]
# coeffs = [20, 28, 5, 42, 15, 35, 1]
coeffs = [35, 15, 20, 1, 1]
# confidence = conf_test_dble(rad, coeffs)