Skip to content
Snippets Groups Projects
Commit ebb1ea86 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 228ecaec
No related branches found
No related tags found
No related merge requests found
......@@ -686,6 +686,82 @@ def analyze2(raob_to_amv_dct, raob_dct, gfs_filename=None):
np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i])))
def compare_amvs_bestfit(amvs, bfs):
didx = 4
sidx = 3
pidx = 2
vld_bf = bfs[:, 3] == 0
keep_idxs = vld_bf
bin_size = 200.0
bin_ranges = get_press_bin_ranges(50, 1050, bin_size=bin_size)
amv_p = amvs[keep_idxs, pidx]
bf_p = bfs[keep_idxs, 2]
diff = amv_p - bf_p
mad = np.average(np.abs(diff))
bias = np.average(diff)
print('********************************************************')
print('Number of good best fits: ', bf_p.shape[0])
print('press, MAD: {0:.2f}'.format(mad))
print('press, bias: {0:.2f}'.format(bias))
pd_std = np.std(diff)
pd_mean = np.mean(diff)
print('press bias/rms: {0:.2f} {1:.2f} '.format(pd_mean, np.sqrt(pd_mean**2 + pd_std**2)))
print('------------------------------------------')
bin_pres = bin_data_by(diff, amv_p, bin_ranges)
amv_spd = amvs[keep_idxs, sidx]
amv_dir = amvs[keep_idxs, didx]
bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1])
diff = amv_spd * units('m/s') - bf_spd
diff = diff.magnitude
spd_mad = np.average(np.abs(diff))
spd_bias = np.average(diff)
print('spd, MAD: {0:.2f}'.format(spd_mad))
print('spd, bias: {0:.2f}'.format(spd_bias))
spd_mean = np.mean(diff)
spd_std = np.std(diff)
print('spd MAD/bias/rms: {0:.2f} {1:.2f} {2:.2f}'.format(np.average(np.abs(diff)), spd_mean, np.sqrt(spd_mean**2 + spd_std**2)))
print('-----------------')
bin_spd = bin_data_by(diff, amv_p, bin_ranges)
dir_diff = direction_difference(amv_dir, bf_dir.magnitude)
print('dir, MAD: {0:.2f}'.format(np.average(np.abs(dir_diff))))
print('dir bias: {0:.2f}'.format(np.average(dir_diff)))
print('-------------------------------------')
bin_dir = bin_data_by(dir_diff, amv_p, bin_ranges)
amv_u, amv_v = uv_from_spd_dir(amvs[keep_idxs, sidx], amvs[keep_idxs, didx])
u_diffs = amv_u - (bfs[keep_idxs, 0] * units('m/s'))
v_diffs = amv_v - (bfs[keep_idxs, 1] * units('m/s'))
vd = np.sqrt(u_diffs**2 + v_diffs**2)
vd_mean = np.mean(vd)
vd_std = np.std(vd)
print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2)))
print('******************************************************')
x_values = []
num_pres = []
num_spd = []
num_dir = []
print('level num cases hgt MAD/bias spd MAD/bias dir MAD/bias')
print('-------------------------------------------------------------------')
for i in range(len(bin_ranges)):
x_values.append(np.average(bin_ranges[i]))
num_pres.append(bin_pres[i].shape[0])
num_spd.append(bin_spd[i].shape[0])
num_dir.append(bin_dir[i].shape[0])
print('{0:d} {1:d} {2:.2f}/{3:.2f} {4:.2f}/{5:.2f} {6:.2f}/{7:.2f}'
.format(int(x_values[i]), num_pres[i], np.average(np.abs(bin_pres[i])), np.average(bin_pres[i]),
np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i])))
# imports the S4 NOAA output
# filename: full path as a string, '/home/user/filename'
# returns a dict: time -> list of profiles (a profile is a list of levels)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment