From ebb1ea860471132de0b5f0ae73d13ea3cdff5eb1 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 7 Dec 2020 14:23:21 -0600 Subject: [PATCH] snapshot... --- modules/aeolus/aeolus_amv.py | 76 ++++++++++++++++++++++++++++++++++++ 1 file changed, 76 insertions(+) diff --git a/modules/aeolus/aeolus_amv.py b/modules/aeolus/aeolus_amv.py index c53e52b2..35c16db7 100644 --- a/modules/aeolus/aeolus_amv.py +++ b/modules/aeolus/aeolus_amv.py @@ -686,6 +686,82 @@ def analyze2(raob_to_amv_dct, raob_dct, gfs_filename=None): np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i]))) +def compare_amvs_bestfit(amvs, bfs): + didx = 4 + sidx = 3 + pidx = 2 + + vld_bf = bfs[:, 3] == 0 + keep_idxs = vld_bf + + bin_size = 200.0 + bin_ranges = get_press_bin_ranges(50, 1050, bin_size=bin_size) + + amv_p = amvs[keep_idxs, pidx] + bf_p = bfs[keep_idxs, 2] + diff = amv_p - bf_p + mad = np.average(np.abs(diff)) + bias = np.average(diff) + print('********************************************************') + print('Number of good best fits: ', bf_p.shape[0]) + print('press, MAD: {0:.2f}'.format(mad)) + print('press, bias: {0:.2f}'.format(bias)) + pd_std = np.std(diff) + pd_mean = np.mean(diff) + print('press bias/rms: {0:.2f} {1:.2f} '.format(pd_mean, np.sqrt(pd_mean**2 + pd_std**2))) + print('------------------------------------------') + + bin_pres = bin_data_by(diff, amv_p, bin_ranges) + + amv_spd = amvs[keep_idxs, sidx] + amv_dir = amvs[keep_idxs, didx] + bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1]) + + diff = amv_spd * units('m/s') - bf_spd + diff = diff.magnitude + spd_mad = np.average(np.abs(diff)) + spd_bias = np.average(diff) + print('spd, MAD: {0:.2f}'.format(spd_mad)) + print('spd, bias: {0:.2f}'.format(spd_bias)) + spd_mean = np.mean(diff) + spd_std = np.std(diff) + print('spd MAD/bias/rms: {0:.2f} {1:.2f} {2:.2f}'.format(np.average(np.abs(diff)), spd_mean, np.sqrt(spd_mean**2 + spd_std**2))) + print('-----------------') + bin_spd = bin_data_by(diff, amv_p, bin_ranges) + + dir_diff = direction_difference(amv_dir, bf_dir.magnitude) + print('dir, MAD: {0:.2f}'.format(np.average(np.abs(dir_diff)))) + print('dir bias: {0:.2f}'.format(np.average(dir_diff))) + print('-------------------------------------') + bin_dir = bin_data_by(dir_diff, amv_p, bin_ranges) + + amv_u, amv_v = uv_from_spd_dir(amvs[keep_idxs, sidx], amvs[keep_idxs, didx]) + u_diffs = amv_u - (bfs[keep_idxs, 0] * units('m/s')) + v_diffs = amv_v - (bfs[keep_idxs, 1] * units('m/s')) + + vd = np.sqrt(u_diffs**2 + v_diffs**2) + vd_mean = np.mean(vd) + vd_std = np.std(vd) + print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2))) + print('******************************************************') + + x_values = [] + num_pres = [] + num_spd = [] + num_dir = [] + print('level num cases hgt MAD/bias spd MAD/bias dir MAD/bias') + print('-------------------------------------------------------------------') + for i in range(len(bin_ranges)): + x_values.append(np.average(bin_ranges[i])) + num_pres.append(bin_pres[i].shape[0]) + num_spd.append(bin_spd[i].shape[0]) + num_dir.append(bin_dir[i].shape[0]) + + print('{0:d} {1:d} {2:.2f}/{3:.2f} {4:.2f}/{5:.2f} {6:.2f}/{7:.2f}' + .format(int(x_values[i]), num_pres[i], np.average(np.abs(bin_pres[i])), np.average(bin_pres[i]), + np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i]))) + + # imports the S4 NOAA output # filename: full path as a string, '/home/user/filename' # returns a dict: time -> list of profiles (a profile is a list of levels) -- GitLab