Skip to content
Snippets Groups Projects
Commit 228ecaec authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 56077ed5
No related branches found
No related tags found
No related merge requests found
......@@ -473,6 +473,7 @@ def analyze2(raob_to_amv_dct, raob_dct, gfs_filename=None):
print('Hgh Press min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[hgh, pidx].min(), good_amvs[hgh, pidx].max(), good_amvs[hgh, pidx].mean()))
# Comparison to Level of Best Fit (LBF) ------------------------------------------------------------------
# --------------------------------------------------------------------------------------------------------
bin_size = 200.0
bin_ranges = get_press_bin_ranges(50, 1050, bin_size=bin_size)
......@@ -527,6 +528,76 @@ def analyze2(raob_to_amv_dct, raob_dct, gfs_filename=None):
print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2)))
print('******************************************************')
x_values = []
num_pres = []
num_spd = []
num_dir = []
print('level num cases hgt MAD/bias spd MAD/bias dir MAD/bias')
print('-------------------------------------------------------------------')
for i in range(len(bin_ranges)):
x_values.append(np.average(bin_ranges[i]))
num_pres.append(bin_pres[i].shape[0])
num_spd.append(bin_spd[i].shape[0])
num_dir.append(bin_dir[i].shape[0])
print('{0:d} {1:d} {2:.2f}/{3:.2f} {4:.2f}/{5:.2f} {6:.2f}/{7:.2f}'
.format(int(x_values[i]), num_pres[i], np.average(np.abs(bin_pres[i])), np.average(bin_pres[i]),
np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i])))
# Comparison to Level of Best Fit (LBF) GFS ------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------------
bfs = bfs_gfs
vld_bf = bfs[:, 3] == 0
keep_idxs = vld_bf
amv_p = good_amvs[keep_idxs, pidx]
bf_p = bfs[keep_idxs, 2]
diff = amv_p - bf_p
mad = np.average(np.abs(diff))
bias = np.average(diff)
print('********************************************************')
print('Number of good best fits: ', bf_p.shape[0])
print('press, MAD: {0:.2f}'.format(mad))
print('press, bias: {0:.2f}'.format(bias))
pd_std = np.std(diff)
pd_mean = np.mean(diff)
print('press bias/rms: {0:.2f} {1:.2f} '.format(pd_mean, np.sqrt(pd_mean**2 + pd_std**2)))
print('------------------------------------------')
bin_pres = bin_data_by(diff, amv_p, bin_ranges)
amv_spd = good_amvs[keep_idxs, sidx]
amv_dir = good_amvs[keep_idxs, didx]
bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1])
diff = amv_spd * units('m/s') - bf_spd
diff = diff.magnitude
spd_mad = np.average(np.abs(diff))
spd_bias = np.average(diff)
print('spd, MAD: {0:.2f}'.format(spd_mad))
print('spd, bias: {0:.2f}'.format(spd_bias))
spd_mean = np.mean(diff)
spd_std = np.std(diff)
print('spd MAD/bias/rms: {0:.2f} {1:.2f} {2:.2f}'.format(np.average(np.abs(diff)), spd_mean, np.sqrt(spd_mean**2 + spd_std**2)))
print('-----------------')
bin_spd = bin_data_by(diff, amv_p, bin_ranges)
dir_diff = direction_difference(amv_dir, bf_dir.magnitude)
print('dir, MAD: {0:.2f}'.format(np.average(np.abs(dir_diff))))
print('dir bias: {0:.2f}'.format(np.average(dir_diff)))
print('-------------------------------------')
bin_dir = bin_data_by(dir_diff, amv_p, bin_ranges)
amv_u, amv_v = uv_from_spd_dir(good_amvs[keep_idxs, sidx], good_amvs[keep_idxs, didx])
u_diffs = amv_u - (bfs[keep_idxs, 0] * units('m/s'))
v_diffs = amv_v - (bfs[keep_idxs, 1] * units('m/s'))
vd = np.sqrt(u_diffs**2 + v_diffs**2)
vd_mean = np.mean(vd)
vd_std = np.std(vd)
print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2)))
print('******************************************************')
x_values = []
num_pres = []
num_spd = []
......@@ -544,6 +615,7 @@ def analyze2(raob_to_amv_dct, raob_dct, gfs_filename=None):
np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i])))
# Direct comparison to RAOB profile ---------------------------------------------------------------
# -------------------------------------------------------------------------------------------------
vld = raob_match[:, 3] == 0
keep_idxs = vld
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment