Skip to content
Snippets Groups Projects
Commit b98b04a3 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 57bd819e
No related branches found
No related tags found
No related merge requests found
...@@ -29,7 +29,7 @@ EARLY_STOP = True ...@@ -29,7 +29,7 @@ EARLY_STOP = True
NOISE_TRAINING = False NOISE_TRAINING = False
NOISE_STDDEV = 0.01 NOISE_STDDEV = 0.01
DO_AUGMENT = False DO_AUGMENT = True
DO_SMOOTH = False DO_SMOOTH = False
SIGMA = 1.0 SIGMA = 1.0
...@@ -59,7 +59,8 @@ params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_s ...@@ -59,7 +59,8 @@ params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_s
# data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] # data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
data_params_half = ['temp_11_0um_nom'] data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom']
sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] # sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
sub_fields = ['refl_substddev_ch01']
# sub_fields = ['refl_stddev3x3_ch01'] # sub_fields = ['refl_stddev3x3_ch01']
label_idx_i = params_i.index(label_param) label_idx_i = params_i.index(label_param)
...@@ -210,7 +211,7 @@ class SRCNN: ...@@ -210,7 +211,7 @@ class SRCNN:
self.test_label_files = None self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1 # self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 5 self.n_chans = 4
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
...@@ -271,11 +272,22 @@ class SRCNN: ...@@ -271,11 +272,22 @@ class SRCNN:
data_norm.append(tmp) data_norm.append(tmp)
# High res refectance ---------- # High res refectance ----------
# tmp = input_label[:, label_idx_i, :, :] # idx = params_i.index('refl_0_65um_nom')
# tmp = input_label[:, idx, :, :]
# tmp = np.where(np.isnan(tmp), 0, tmp) # tmp = np.where(np.isnan(tmp), 0, tmp)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(tmp[:, self.slc_y, self.slc_x]) # data_norm.append(tmp[:, self.slc_y, self.slc_x])
idx = params_i.index('refl_0_65um_nom')
tmp = input_label[:, idx, :, :]
tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_2, self.slc_x_2]
tmp = self.upsample(tmp)
tmp = smooth_2d(tmp)
tmp = normalize(tmp, label_param, mean_std_dct)
data_norm.append(tmp)
tmp = input_label[:, label_idx_i, :, :] tmp = input_label[:, label_idx_i, :, :]
tmp = tmp.copy() tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp) tmp = np.where(np.isnan(tmp), 0.0, tmp)
...@@ -328,14 +340,20 @@ class SRCNN: ...@@ -328,14 +340,20 @@ class SRCNN:
label = label.astype(np.float32) label = label.astype(np.float32)
if is_training and DO_AUGMENT: if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1) # data_ud = np.flip(data, axis=1)
label_ud = np.flip(label, axis=1) # label_ud = np.flip(label, axis=1)
#
data_lr = np.flip(data, axis=2) # data_lr = np.flip(data, axis=2)
label_lr = np.flip(label, axis=2) # label_lr = np.flip(label, axis=2)
#
data = np.concatenate([data, data_ud, data_lr]) # data = np.concatenate([data, data_ud, data_lr])
label = np.concatenate([label, label_ud, label_lr]) # label = np.concatenate([label, label_ud, label_lr])
data_rot = np.rot90(data, axes=(1, 2))
label_rot = np.rot90(label, axes=(1, 2))
data = np.concatenate([data, data_rot])
label = np.concatenate([label, label_rot])
return data, label return data, label
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment