From b98b04a39e3da82412cf0c87fda908f5bb0d16a3 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Wed, 12 Jul 2023 11:03:07 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_opd_srcnn_abi.py | 42 +++++++++++++++------ 1 file changed, 30 insertions(+), 12 deletions(-) diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 167580c9..8f277a61 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -29,7 +29,7 @@ EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.01 -DO_AUGMENT = False +DO_AUGMENT = True DO_SMOOTH = False SIGMA = 1.0 @@ -59,7 +59,8 @@ params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_s # data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_half = ['temp_11_0um_nom'] data_params_full = ['refl_0_65um_nom'] -sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] +# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] +sub_fields = ['refl_substddev_ch01'] # sub_fields = ['refl_stddev3x3_ch01'] label_idx_i = params_i.index(label_param) @@ -210,7 +211,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 5 + self.n_chans = 4 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -271,11 +272,22 @@ class SRCNN: data_norm.append(tmp) # High res refectance ---------- - # tmp = input_label[:, label_idx_i, :, :] + # idx = params_i.index('refl_0_65um_nom') + # tmp = input_label[:, idx, :, :] # tmp = np.where(np.isnan(tmp), 0, tmp) # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) # data_norm.append(tmp[:, self.slc_y, self.slc_x]) + idx = params_i.index('refl_0_65um_nom') + tmp = input_label[:, idx, :, :] + tmp = tmp.copy() + tmp = np.where(np.isnan(tmp), 0.0, tmp) + tmp = tmp[:, self.slc_y_2, self.slc_x_2] + tmp = self.upsample(tmp) + tmp = smooth_2d(tmp) + tmp = normalize(tmp, label_param, mean_std_dct) + data_norm.append(tmp) + tmp = input_label[:, label_idx_i, :, :] tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0.0, tmp) @@ -328,14 +340,20 @@ class SRCNN: label = label.astype(np.float32) if is_training and DO_AUGMENT: - data_ud = np.flip(data, axis=1) - label_ud = np.flip(label, axis=1) - - data_lr = np.flip(data, axis=2) - label_lr = np.flip(label, axis=2) - - data = np.concatenate([data, data_ud, data_lr]) - label = np.concatenate([label, label_ud, label_lr]) + # data_ud = np.flip(data, axis=1) + # label_ud = np.flip(label, axis=1) + # + # data_lr = np.flip(data, axis=2) + # label_lr = np.flip(label, axis=2) + # + # data = np.concatenate([data, data_ud, data_lr]) + # label = np.concatenate([label, label_ud, label_lr]) + + data_rot = np.rot90(data, axes=(1, 2)) + label_rot = np.rot90(label, axes=(1, 2)) + + data = np.concatenate([data, data_rot]) + label = np.concatenate([label, label_rot]) return data, label -- GitLab