Skip to content
Snippets Groups Projects
Commit b98b04a3 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 57bd819e
No related branches found
No related tags found
No related merge requests found
......@@ -29,7 +29,7 @@ EARLY_STOP = True
NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = False
DO_AUGMENT = True
DO_SMOOTH = False
SIGMA = 1.0
......@@ -59,7 +59,8 @@ params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_s
# data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
sub_fields = ['refl_substddev_ch01']
# sub_fields = ['refl_stddev3x3_ch01']
label_idx_i = params_i.index(label_param)
......@@ -210,7 +211,7 @@ class SRCNN:
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 5
self.n_chans = 4
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
......@@ -271,11 +272,22 @@ class SRCNN:
data_norm.append(tmp)
# High res refectance ----------
# tmp = input_label[:, label_idx_i, :, :]
# idx = params_i.index('refl_0_65um_nom')
# tmp = input_label[:, idx, :, :]
# tmp = np.where(np.isnan(tmp), 0, tmp)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(tmp[:, self.slc_y, self.slc_x])
idx = params_i.index('refl_0_65um_nom')
tmp = input_label[:, idx, :, :]
tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_2, self.slc_x_2]
tmp = self.upsample(tmp)
tmp = smooth_2d(tmp)
tmp = normalize(tmp, label_param, mean_std_dct)
data_norm.append(tmp)
tmp = input_label[:, label_idx_i, :, :]
tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp)
......@@ -328,14 +340,20 @@ class SRCNN:
label = label.astype(np.float32)
if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1)
label_ud = np.flip(label, axis=1)
data_lr = np.flip(data, axis=2)
label_lr = np.flip(label, axis=2)
data = np.concatenate([data, data_ud, data_lr])
label = np.concatenate([label, label_ud, label_lr])
# data_ud = np.flip(data, axis=1)
# label_ud = np.flip(label, axis=1)
#
# data_lr = np.flip(data, axis=2)
# label_lr = np.flip(label, axis=2)
#
# data = np.concatenate([data, data_ud, data_lr])
# label = np.concatenate([label, label_ud, label_lr])
data_rot = np.rot90(data, axes=(1, 2))
label_rot = np.rot90(label, axes=(1, 2))
data = np.concatenate([data, data_rot])
label = np.concatenate([label, label_rot])
return data, label
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment