Skip to content
Snippets Groups Projects
Commit b98b04a3 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 57bd819e
Branches
No related tags found
No related merge requests found
......@@ -29,7 +29,7 @@ EARLY_STOP = True
NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = False
DO_AUGMENT = True
DO_SMOOTH = False
SIGMA = 1.0
......@@ -59,7 +59,8 @@ params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_s
# data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
sub_fields = ['refl_substddev_ch01']
# sub_fields = ['refl_stddev3x3_ch01']
label_idx_i = params_i.index(label_param)
......@@ -210,7 +211,7 @@ class SRCNN:
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 5
self.n_chans = 4
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
......@@ -271,11 +272,22 @@ class SRCNN:
data_norm.append(tmp)
# High res refectance ----------
# tmp = input_label[:, label_idx_i, :, :]
# idx = params_i.index('refl_0_65um_nom')
# tmp = input_label[:, idx, :, :]
# tmp = np.where(np.isnan(tmp), 0, tmp)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(tmp[:, self.slc_y, self.slc_x])
idx = params_i.index('refl_0_65um_nom')
tmp = input_label[:, idx, :, :]
tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_2, self.slc_x_2]
tmp = self.upsample(tmp)
tmp = smooth_2d(tmp)
tmp = normalize(tmp, label_param, mean_std_dct)
data_norm.append(tmp)
tmp = input_label[:, label_idx_i, :, :]
tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp)
......@@ -328,14 +340,20 @@ class SRCNN:
label = label.astype(np.float32)
if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1)
label_ud = np.flip(label, axis=1)
data_lr = np.flip(data, axis=2)
label_lr = np.flip(label, axis=2)
data = np.concatenate([data, data_ud, data_lr])
label = np.concatenate([label, label_ud, label_lr])
# data_ud = np.flip(data, axis=1)
# label_ud = np.flip(label, axis=1)
#
# data_lr = np.flip(data, axis=2)
# label_lr = np.flip(label, axis=2)
#
# data = np.concatenate([data, data_ud, data_lr])
# label = np.concatenate([label, label_ud, label_lr])
data_rot = np.rot90(data, axes=(1, 2))
label_rot = np.rot90(label, axes=(1, 2))
data = np.concatenate([data, data_rot])
label = np.concatenate([label, label_rot])
return data, label
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment