Skip to content
Snippets Groups Projects
Commit 94509fa9 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 38fc2d56
No related branches found
No related tags found
No related merge requests found
......@@ -21,7 +21,7 @@ LOG_DEVICE_PLACEMENT = False
PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 5000
NumClasses = 3
NumClasses = 5
if NumClasses == 2:
NumLogits = 1
else:
......@@ -37,7 +37,7 @@ NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = True
DO_SMOOTH = True
DO_SMOOTH = False
SIGMA = 1.0
DO_ZERO_OUT = False
DO_ESPCN = False # Note: If True, cannot do mixed resolution input fields (Adjust accordingly below)
......@@ -275,15 +275,6 @@ class SRCNN:
self.OUT_OF_RANGE = False
# self.abi = None
# self.temp = None
# self.wv = None
# self.lbfp = None
# self.sfc = None
# self.in_mem_data_cache = {}
# self.in_mem_data_cache_test = {}
self.model = None
self.optimizer = None
self.ema = None
......@@ -314,11 +305,6 @@ class SRCNN:
self.test_data_files = None
self.test_label_files = None
# self.train_data_nda = None
# self.train_label_nda = None
# self.test_data_nda = None
# self.test_label_nda = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 5
......@@ -366,10 +352,6 @@ class SRCNN:
# input_data = np.concatenate(data_s)
# input_label = np.concatenate(label_s)
DO_ADD_NOISE = False
if is_training and NOISE_TRAINING:
DO_ADD_NOISE = True
data_norm = []
for param in data_params_half:
idx = params.index(param)
......@@ -381,8 +363,6 @@ class SRCNN:
tmp = get_grid_cell_mean(tmp)
tmp = tmp[:, 0:66, 0:66]
tmp = normalize(tmp, param, mean_std_dct)
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
data_norm.append(tmp)
for param in data_params_full:
......@@ -412,13 +392,7 @@ class SRCNN:
tmp = tmp[:, 0:66, 0:66]
if label_param != 'cloud_probability':
tmp = normalize(tmp, label_param, mean_std_dct)
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
else:
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
tmp = np.where(tmp < 0.0, 0.0, tmp)
tmp = np.where(tmp > 1.0, 1.0, tmp)
data_norm.append(tmp)
# ---------
data = np.stack(data_norm, axis=3)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment