Skip to content
Snippets Groups Projects
Commit 38fc2d56 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 1917df70
No related branches found
No related tags found
No related merge requests found
......@@ -67,6 +67,7 @@ data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
label_idx = params.index(label_param)
# label_idx = 0
print('data_params_half: ', data_params_half)
print('data_params_full: ', data_params_full)
......@@ -274,14 +275,14 @@ class SRCNN:
self.OUT_OF_RANGE = False
self.abi = None
self.temp = None
self.wv = None
self.lbfp = None
self.sfc = None
# self.abi = None
# self.temp = None
# self.wv = None
# self.lbfp = None
# self.sfc = None
self.in_mem_data_cache = {}
self.in_mem_data_cache_test = {}
# self.in_mem_data_cache = {}
# self.in_mem_data_cache_test = {}
self.model = None
self.optimizer = None
......@@ -313,10 +314,10 @@ class SRCNN:
self.test_data_files = None
self.test_label_files = None
self.train_data_nda = None
self.train_label_nda = None
self.test_data_nda = None
self.test_label_nda = None
# self.train_data_nda = None
# self.train_label_nda = None
# self.test_data_nda = None
# self.test_label_nda = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 5
......@@ -343,6 +344,27 @@ class SRCNN:
continue
data_s.append(nda)
input_data = np.concatenate(data_s)
input_label = input_data[:, label_idx, :, :]
# if is_training:
# data_files = self.train_data_files
# label_files = self.train_label_files
# else:
# data_files = self.test_data_files
# label_files = self.test_label_files
#
# data_s = []
# label_s = []
# for k in idxs:
# f = data_files[k]
# nda = np.load(f)
# data_s.append(nda)
#
# f = label_files[k]
# nda = np.load(f)
# label_s.append(nda)
# input_data = np.concatenate(data_s)
# input_label = np.concatenate(label_s)
DO_ADD_NOISE = False
if is_training and NOISE_TRAINING:
......@@ -379,7 +401,7 @@ class SRCNN:
data_norm.append(avg[:, 0:66, 0:66])
# data_norm.append(std[:, 0:66, 0:66])
# ---------------------------------------------------
tmp = input_data[:, label_idx, :, :]
tmp = input_label
tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0, tmp)
if DO_ESPCN:
......@@ -403,7 +425,7 @@ class SRCNN:
data = data.astype(np.float32)
# -----------------------------------------------------
# -----------------------------------------------------
label = input_data[:, label_idx, :, :]
label = input_label
label = label.copy()
label = label[:, y_128, x_128]
label = get_label_data(label)
......@@ -466,13 +488,18 @@ class SRCNN:
dataset = dataset.cache()
self.test_dataset = dataset
def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):
def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
# self.train_data_files = train_data_files
# self.train_label_files = train_label_files
# self.test_data_files = test_data_files
# self.test_label_files = test_label_files
self.train_data_files = train_data_files
self.test_data_files = test_data_files
trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs)
tst_idxs = np.arange(len(test_data_files))
self.get_train_dataset(trn_idxs)
......@@ -795,10 +822,16 @@ class SRCNN:
return pred
def run(self, directory, ckpt_dir=None, num_data_samples=50000):
# train_data_files = glob.glob(directory+'data_train*.npy')
# valid_data_files = glob.glob(directory+'data_valid*.npy')
# train_label_files = glob.glob(directory+'label_train*.npy')
# valid_label_files = glob.glob(directory+'label_valid*.npy')
# self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
train_data_files = glob.glob(directory+'data_train_*.npy')
valid_data_files = glob.glob(directory+'data_valid_*.npy')
self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
self.setup_pipeline(train_data_files, valid_data_files, num_data_samples)
self.build_model()
self.build_training()
self.build_evaluation()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment