diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py
index 43ba6cc7d5d339e3ff6f87d9b6192099754970e5..1e6aa4c56097ab21bf407200cbef9285df74fd8e 100644
--- a/modules/deeplearning/cnn_cld_frac_mod_res.py
+++ b/modules/deeplearning/cnn_cld_frac_mod_res.py
@@ -67,6 +67,7 @@ data_params_half = ['temp_11_0um_nom']
 data_params_full = ['refl_0_65um_nom']
 
 label_idx = params.index(label_param)
+# label_idx = 0
 
 print('data_params_half: ', data_params_half)
 print('data_params_full: ', data_params_full)
@@ -274,14 +275,14 @@ class SRCNN:
 
         self.OUT_OF_RANGE = False
 
-        self.abi = None
-        self.temp = None
-        self.wv = None
-        self.lbfp = None
-        self.sfc = None
+        # self.abi = None
+        # self.temp = None
+        # self.wv = None
+        # self.lbfp = None
+        # self.sfc = None
 
-        self.in_mem_data_cache = {}
-        self.in_mem_data_cache_test = {}
+        # self.in_mem_data_cache = {}
+        # self.in_mem_data_cache_test = {}
 
         self.model = None
         self.optimizer = None
@@ -313,10 +314,10 @@ class SRCNN:
         self.test_data_files = None
         self.test_label_files = None
 
-        self.train_data_nda = None
-        self.train_label_nda = None
-        self.test_data_nda = None
-        self.test_label_nda = None
+        # self.train_data_nda = None
+        # self.train_label_nda = None
+        # self.test_data_nda = None
+        # self.test_label_nda = None
 
         # self.n_chans = len(data_params_half) + len(data_params_full) + 1
         self.n_chans = 5
@@ -343,6 +344,27 @@ class SRCNN:
                 continue
             data_s.append(nda)
         input_data = np.concatenate(data_s)
+        input_label = input_data[:, label_idx, :, :]
+
+        # if is_training:
+        #     data_files = self.train_data_files
+        #     label_files = self.train_label_files
+        # else:
+        #     data_files = self.test_data_files
+        #     label_files = self.test_label_files
+        #
+        # data_s = []
+        # label_s = []
+        # for k in idxs:
+        #     f = data_files[k]
+        #     nda = np.load(f)
+        #     data_s.append(nda)
+        #
+        #     f = label_files[k]
+        #     nda = np.load(f)
+        #     label_s.append(nda)
+        # input_data = np.concatenate(data_s)
+        # input_label = np.concatenate(label_s)
 
         DO_ADD_NOISE = False
         if is_training and NOISE_TRAINING:
@@ -379,7 +401,7 @@ class SRCNN:
             data_norm.append(avg[:, 0:66, 0:66])
             # data_norm.append(std[:, 0:66, 0:66])
         # ---------------------------------------------------
-        tmp = input_data[:, label_idx, :, :]
+        tmp = input_label
         tmp = tmp.copy()
         tmp = np.where(np.isnan(tmp), 0, tmp)
         if DO_ESPCN:
@@ -403,7 +425,7 @@ class SRCNN:
         data = data.astype(np.float32)
         # -----------------------------------------------------
         # -----------------------------------------------------
-        label = input_data[:, label_idx, :, :]
+        label = input_label
         label = label.copy()
         label = label[:, y_128, x_128]
         label = get_label_data(label)
@@ -466,13 +488,18 @@ class SRCNN:
         dataset = dataset.cache()
         self.test_dataset = dataset
 
-    def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):
+    def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
+        # self.train_data_files = train_data_files
+        # self.train_label_files = train_label_files
+        # self.test_data_files = test_data_files
+        # self.test_label_files = test_label_files
 
         self.train_data_files = train_data_files
         self.test_data_files = test_data_files
 
         trn_idxs = np.arange(len(train_data_files))
         np.random.shuffle(trn_idxs)
+
         tst_idxs = np.arange(len(test_data_files))
 
         self.get_train_dataset(trn_idxs)
@@ -795,10 +822,16 @@ class SRCNN:
         return pred
 
     def run(self, directory, ckpt_dir=None, num_data_samples=50000):
+        # train_data_files = glob.glob(directory+'data_train*.npy')
+        # valid_data_files = glob.glob(directory+'data_valid*.npy')
+        # train_label_files = glob.glob(directory+'label_train*.npy')
+        # valid_label_files = glob.glob(directory+'label_valid*.npy')
+        # self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
+
         train_data_files = glob.glob(directory+'data_train_*.npy')
         valid_data_files = glob.glob(directory+'data_valid_*.npy')
+        self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
 
-        self.setup_pipeline(train_data_files, valid_data_files, num_data_samples)
         self.build_model()
         self.build_training()
         self.build_evaluation()