diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py index 1e6aa4c56097ab21bf407200cbef9285df74fd8e..aff1f2a5d2701c51ea11940e0272b165e2699401 100644 --- a/modules/deeplearning/cnn_cld_frac_mod_res.py +++ b/modules/deeplearning/cnn_cld_frac_mod_res.py @@ -21,7 +21,7 @@ LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 4 PROC_BATCH_BUFFER_SIZE = 5000 -NumClasses = 3 +NumClasses = 5 if NumClasses == 2: NumLogits = 1 else: @@ -37,7 +37,7 @@ NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = True -DO_SMOOTH = True +DO_SMOOTH = False SIGMA = 1.0 DO_ZERO_OUT = False DO_ESPCN = False # Note: If True, cannot do mixed resolution input fields (Adjust accordingly below) @@ -275,15 +275,6 @@ class SRCNN: self.OUT_OF_RANGE = False - # self.abi = None - # self.temp = None - # self.wv = None - # self.lbfp = None - # self.sfc = None - - # self.in_mem_data_cache = {} - # self.in_mem_data_cache_test = {} - self.model = None self.optimizer = None self.ema = None @@ -314,11 +305,6 @@ class SRCNN: self.test_data_files = None self.test_label_files = None - # self.train_data_nda = None - # self.train_label_nda = None - # self.test_data_nda = None - # self.test_label_nda = None - # self.n_chans = len(data_params_half) + len(data_params_full) + 1 self.n_chans = 5 @@ -366,10 +352,6 @@ class SRCNN: # input_data = np.concatenate(data_s) # input_label = np.concatenate(label_s) - DO_ADD_NOISE = False - if is_training and NOISE_TRAINING: - DO_ADD_NOISE = True - data_norm = [] for param in data_params_half: idx = params.index(param) @@ -381,8 +363,6 @@ class SRCNN: tmp = get_grid_cell_mean(tmp) tmp = tmp[:, 0:66, 0:66] tmp = normalize(tmp, param, mean_std_dct) - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) data_norm.append(tmp) for param in data_params_full: @@ -412,13 +392,7 @@ class SRCNN: tmp = tmp[:, 0:66, 0:66] if label_param != 'cloud_probability': tmp = normalize(tmp, label_param, mean_std_dct) - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - else: - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - tmp = np.where(tmp < 0.0, 0.0, tmp) - tmp = np.where(tmp > 1.0, 1.0, tmp) + data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3)