Skip to content
Snippets Groups Projects
Commit 0eec8d81 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 3eb8545d
No related branches found
No related tags found
No related merge requests found
...@@ -610,22 +610,26 @@ class UNET: ...@@ -610,22 +610,26 @@ class UNET:
conv = tf.keras.layers.concatenate([conv, conv_4]) conv = tf.keras.layers.concatenate([conv, conv_4])
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters /= 2 num_filters /= 2
conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
conv = tf.keras.layers.concatenate([conv, conv_3]) conv = tf.keras.layers.concatenate([conv, conv_3])
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters /= 2 num_filters /= 2
conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
conv = tf.keras.layers.concatenate([conv, conv_2]) conv = tf.keras.layers.concatenate([conv, conv_2])
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters /= 2 num_filters /= 2
conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
conv = tf.keras.layers.concatenate([conv, conv_1]) conv = tf.keras.layers.concatenate([conv, conv_1])
print(conv.shape)
if NumClasses == 2: if NumClasses == 2:
activation = tf.nn.sigmoid # For binary activation = tf.nn.sigmoid # For binary
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment