From 0eec8d81f1fb17fc63c7eb96213f146423a7bc94 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 5 Apr 2022 14:18:20 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/unet.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/modules/deeplearning/unet.py b/modules/deeplearning/unet.py index e16946ef..27fcc7bd 100644 --- a/modules/deeplearning/unet.py +++ b/modules/deeplearning/unet.py @@ -610,22 +610,26 @@ class UNET: conv = tf.keras.layers.concatenate([conv, conv_4]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_3]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_2]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_1]) + print(conv.shape) if NumClasses == 2: activation = tf.nn.sigmoid # For binary -- GitLab