diff --git a/modules/deeplearning/unet.py b/modules/deeplearning/unet.py index e16946ef7b6259fcc01c012c34f5f8f0e72ea22c..27fcc7bd457d8fb16f4d0e50d7ac7ff5bc6d0e67 100644 --- a/modules/deeplearning/unet.py +++ b/modules/deeplearning/unet.py @@ -610,22 +610,26 @@ class UNET: conv = tf.keras.layers.concatenate([conv, conv_4]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_3]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_2]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_1]) + print(conv.shape) if NumClasses == 2: activation = tf.nn.sigmoid # For binary