Skip to content
Snippets Groups Projects
Commit 0e7f4cda authored by tomrink's avatar tomrink
Browse files

snapshot...

parent e37ca30f
No related branches found
No related tags found
No related merge requests found
...@@ -437,9 +437,11 @@ class ESPCN: ...@@ -437,9 +437,11 @@ class ESPCN:
print(conv.shape) print(conv.shape)
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
conv.trainable = False
print(conv.shape) print(conv.shape)
conv = tf.keras.layers.Conv2DTranspose(num_filters // 8, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
conv.trainable = False
print(conv.shape) print(conv.shape)
#self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv) #self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv)
...@@ -449,11 +451,6 @@ class ESPCN: ...@@ -449,11 +451,6 @@ class ESPCN:
# conv = tf.keras.layers.Activation(activation=activation)(conv) # conv = tf.keras.layers.Activation(activation=activation)(conv)
# print(conv.shape) # print(conv.shape)
# #
# if NumClasses == 2:
# activation = tf.nn.sigmoid # For binary
# else:
# activation = tf.nn.softmax # For multi-class
#
# # Called logits, but these are actually probabilities, see activation # # Called logits, but these are actually probabilities, see activation
# self.logits = tf.keras.layers.Activation(activation=activation)(conv) # self.logits = tf.keras.layers.Activation(activation=activation)(conv)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment