From 0e7f4cda15f160ba8e8668844bffe50cc5bca5df Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 8 Aug 2022 17:20:40 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/espcn.py | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 990036ec..f8d30d5b 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -437,9 +437,11 @@ class ESPCN: print(conv.shape) conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) + conv.trainable = False print(conv.shape) - conv = tf.keras.layers.Conv2DTranspose(num_filters // 8, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) + conv.trainable = False print(conv.shape) #self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv) @@ -449,11 +451,6 @@ class ESPCN: # conv = tf.keras.layers.Activation(activation=activation)(conv) # print(conv.shape) # - # if NumClasses == 2: - # activation = tf.nn.sigmoid # For binary - # else: - # activation = tf.nn.softmax # For multi-class - # # # Called logits, but these are actually probabilities, see activation # self.logits = tf.keras.layers.Activation(activation=activation)(conv) -- GitLab