From 0e7f4cda15f160ba8e8668844bffe50cc5bca5df Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Mon, 8 Aug 2022 17:20:40 -0500
Subject: [PATCH] snapshot...

---
 modules/deeplearning/espcn.py | 9 +++------
 1 file changed, 3 insertions(+), 6 deletions(-)

diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py
index 990036ec..f8d30d5b 100644
--- a/modules/deeplearning/espcn.py
+++ b/modules/deeplearning/espcn.py
@@ -437,9 +437,11 @@ class ESPCN:
         print(conv.shape)
 
         conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
+        conv.trainable = False
         print(conv.shape)
 
-        conv = tf.keras.layers.Conv2DTranspose(num_filters // 8, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
+        conv.trainable = False
         print(conv.shape)
 
         #self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv)
@@ -449,11 +451,6 @@ class ESPCN:
         # conv = tf.keras.layers.Activation(activation=activation)(conv)
         # print(conv.shape)
         #
-        # if NumClasses == 2:
-        #     activation = tf.nn.sigmoid  # For binary
-        # else:
-        #     activation = tf.nn.softmax  # For multi-class
-        #
         # # Called logits, but these are actually probabilities, see activation
         # self.logits = tf.keras.layers.Activation(activation=activation)(conv)
 
-- 
GitLab