diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 990036ec429e04b3ea104ef2bbec34d7e31e5127..f8d30d5be0842eb8209dafe06bd19e7e1981554f 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -437,9 +437,11 @@ class ESPCN: print(conv.shape) conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) + conv.trainable = False print(conv.shape) - conv = tf.keras.layers.Conv2DTranspose(num_filters // 8, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) + conv.trainable = False print(conv.shape) #self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv) @@ -449,11 +451,6 @@ class ESPCN: # conv = tf.keras.layers.Activation(activation=activation)(conv) # print(conv.shape) # - # if NumClasses == 2: - # activation = tf.nn.sigmoid # For binary - # else: - # activation = tf.nn.softmax # For multi-class - # # # Called logits, but these are actually probabilities, see activation # self.logits = tf.keras.layers.Activation(activation=activation)(conv)