Skip to content
Snippets Groups Projects
compare.py 84.4 KiB
Newer Older
(no author)'s avatar
(no author) committed
#!/usr/bin/env python
# encoding: utf-8
"""

Top-level routines to compare two files.


Created by rayg Apr 2009.
Copyright (c) 2009 University of Wisconsin SSEC. All rights reserved.
"""

#from pprint import pprint, pformat

import os, sys, logging, re, datetime
from urllib import quote
(no author)'s avatar
(no author) committed

# this is a hack to keep glance from needing pyqt unless you run the gui
    try :
        matplotlib.use('Qt4Agg')
        import glance.gui_controller as gui_control
    except ImportError :
        print ("*** Unable to import PyQt4. Please install PyQt4 and add it to your PYTHONPATH in order to use the Glance GUI. ***")
        raise
import glance.io     as io
import glance.data   as dataobj
import glance.stats  as statistics
import glance.plotcreatefns as plotcreate
import glance.collocation   as collocation
import glance.config_organizer as config_organizer
from glance.util        import clean_path, rsync_or_copy_files, get_glance_version_string, get_run_identification_info, setup_dir_if_needed
from glance.load        import get_UV_info_from_magnitude_direction_info, load_variable_data, open_and_process_files, handle_lon_lat_info, handle_lon_lat_info_for_one_file
from glance.lonlat_util import VariableComparisonError
from glance.constants   import *
# TODO, I'd like to move this into a different file at some point
def _get_name_info_for_variable(original_display_name, variable_run_info) :
    """
    based on the variable run info, figure out the various names for
    the variable and return them
    
    the various names are:
    
    technical_name -            the name the variable is listed under in the file
    b_variable_technical_name - the name the variable is listed under in the b file (may be the same as technical_name)
    explanation_name -          the more verbose name that will be shown to the user to identify the variable
    original_display_name -     the display name given by the user to describe the variable
    """
    
    # figure out the various name related info
    technical_name = variable_run_info[VARIABLE_TECH_NAME_KEY]
    explanation_name = technical_name # for now, will add to this later
    
    # if B has an alternate variable name, figure that out
    b_variable_technical_name = technical_name
    if VARIABLE_B_TECH_NAME_KEY in variable_run_info :
        b_variable_technical_name = variable_run_info[VARIABLE_B_TECH_NAME_KEY]
        # put both names in our explanation
        explanation_name = explanation_name + " / " + b_variable_technical_name
    
    # show both the display and current explanation names if they differ
    if not (original_display_name == explanation_name) :
        explanation_name = original_display_name + ' (' + explanation_name + ')'
    
    return technical_name, b_variable_technical_name, explanation_name

def colocateToFile_library_call(a_path, b_path, var_list=[ ],
                                options_set={ },
                                # todo, this doesn't yet do anything
                                do_document=False,
                                # todo, the output channel does nothing at the moment
                                output_channel=sys.stdout) :
    """
    this method handles the actual work of the colocateData command line tool
    and can be used as a library routine.
    
    TODO, properly document the options
    """
    
    # load the user settings from either the command line or a user defined config file
    pathsTemp, runInfo, defaultValues, requestedNames, usedConfigFile = config_organizer.load_config_or_options(a_path, b_path,
                                                                                                                options_set,
                                                                                                                requestedVars = var_list)
    setup_dir_if_needed(pathsTemp[OUT_FILE_KEY], "output")
    # make copies of the input files for colocation TODO, fix paths
    [pathsTemp[A_FILE_KEY], pathsTemp[B_FILE_KEY]] = rsync_or_copy_files ([pathsTemp[A_FILE_KEY], pathsTemp[B_FILE_KEY]],
                                                                          target_directory=pathsTemp[OUT_FILE_KEY],
                                                                          additionalFileNameSuffix='-collocated')
    aFile = dataobj.FileInfo(pathsTemp[A_FILE_KEY], allowWrite=True)
        LOG.warn("Unable to continue with comparison because file a (" + pathsTemp[A_FILE_KEY] + ") could not be opened.")
    bFile = dataobj.FileInfo(pathsTemp[B_FILE_KEY], allowWrite=True)
        LOG.warn("Unable to continue with comparison because file b (" + pathsTemp[B_FILE_KEY] + ") could not be opened.")
        sys.exit(1)
    
    # get information about the names the user requested
    finalNames, nameStats = config_organizer.resolve_names(aFile.file_object,
                                                           bFile.file_object,
                                                           defaultValues,
                                                           requestedNames,
                                                           usedConfigFile)
    
    # return for lon_lat_data variables will be in the form 
    #{LON_KEY: longitude_data,      LAT_KEY: latitude_data,      INVALID_MASK_KEY: spaciallyInvalidMaskData}
        lon_lat_data, _ = handle_lon_lat_info (runInfo, aFile, bFile, pathsTemp[OUT_FILE_KEY], should_check_equality=False,
                                               fullDPI=runInfo[DETAIL_DPI_KEY], thumbDPI=runInfo[THUMBNAIL_DPI_KEY])
    except ValueError, vle :
        LOG.warn("Error while loading longitude or latitude: ")
        exit(1)
    except VariableComparisonError, vce :
        LOG.warn("Error while comparing longitude or latitude: ")
    
    # handle the longitude and latitude colocation
    LOG.info("Colocating raw longitude and latitude information")
    aColocationInfomation, bColocationInformation, totalNumberOfMatchedPoints = \
                    collocation.create_colocation_mapping_within_epsilon((lon_lat_data[A_FILE_KEY][LON_KEY], lon_lat_data[A_FILE_KEY][LAT_KEY]),
                                                                         (lon_lat_data[B_FILE_KEY][LON_KEY], lon_lat_data[B_FILE_KEY][LAT_KEY]),
                                                                         runInfo[LON_LAT_EPSILON_KEY],
                                                                         invalidAMask=lon_lat_data[A_FILE_KEY][INVALID_MASK_KEY],
                                                                         invalidBMask=lon_lat_data[B_FILE_KEY][INVALID_MASK_KEY])
    (colocatedLongitude, colocatedLatitude, (numMultipleMatchesInA, numMultipleMatchesInB)), \
    (unmatchedALongitude, unmatchedALatitude), \
    (unmatchedBLongitude, unmatchedBLatitude) = \
                collocation.create_colocated_lonlat_with_lon_lat_colocation(aColocationInfomation, bColocationInformation,
                                                                            totalNumberOfMatchedPoints,
                                                                            lon_lat_data[A_FILE_KEY][LON_KEY], lon_lat_data[A_FILE_KEY][LAT_KEY],
                                                                            lon_lat_data[B_FILE_KEY][LON_KEY], lon_lat_data[B_FILE_KEY][LAT_KEY])
    
    # TODO, based on unmatched, issue warnings and record info in the file?
    LOG.debug("colocated shape of the longitude: " + str(colocatedLongitude.shape))
    LOG.debug("colocated shape of the latitude:  " + str(colocatedLatitude.shape))
    LOG.debug(str(numMultipleMatchesInA) + " lon/lat pairs contain A points used for multiple matches.")
    LOG.debug(str(numMultipleMatchesInB) + " lon/lat pairs contain B points used for multiple matches.")
    LOG.debug(str(len(unmatchedALatitude)) + " A lon/lat points could not be matched.")
    LOG.debug(str(len(unmatchedBLatitude)) + " B lon/lat points could not be matched.")
    
    # go through each of the possible variables in our files
    # and do our colocation for whichever ones we can
    for displayName in finalNames:
        
        # pull out the information for this variable analysis run
        varRunInfo = finalNames[displayName].copy()
        
        # get the various names
        technical_name, b_variable_technical_name, \
                explanationName = _get_name_info_for_variable(displayName, varRunInfo)
        
(no author)'s avatar
(no author) committed
        LOG.info('analyzing: ' + explanationName + ')')
        aData = load_variable_data(aFile.file_object, technical_name,
                                   dataFilter = varRunInfo[FILTER_FUNCTION_A_KEY] if FILTER_FUNCTION_A_KEY in varRunInfo else None,
                                   variableToFilterOn = varRunInfo[VAR_FILTER_NAME_A_KEY] if VAR_FILTER_NAME_A_KEY in varRunInfo else None,
                                   variableBasedFilter = varRunInfo[VAR_FILTER_FUNCTION_A_KEY] if VAR_FILTER_FUNCTION_A_KEY in varRunInfo else None,
                                   altVariableFileObject = dataobj.FileInfo(varRunInfo[VAR_FILTER_ALT_FILE_A_KEY]).file_object if VAR_FILTER_ALT_FILE_A_KEY in varRunInfo else None,
                                   fileDescriptionForDisplay = "file A")
        bData = load_variable_data(bFile.file_object, b_variable_technical_name,
                                   dataFilter = varRunInfo[FILTER_FUNCTION_B_KEY] if FILTER_FUNCTION_B_KEY in varRunInfo else None,
                                   variableToFilterOn = varRunInfo[VAR_FILTER_NAME_B_KEY] if VAR_FILTER_NAME_B_KEY in varRunInfo else None,
                                   variableBasedFilter = varRunInfo[VAR_FILTER_FUNCTION_B_KEY] if VAR_FILTER_FUNCTION_B_KEY in varRunInfo else None,
                                   altVariableFileObject = dataobj.FileInfo(varRunInfo[VAR_FILTER_ALT_FILE_B_KEY]).file_object if VAR_FILTER_ALT_FILE_B_KEY in varRunInfo else None,
                                   fileDescriptionForDisplay = "file B")
(no author)'s avatar
(no author) committed
        # colocate the data for this variable if we have longitude/latitude data
        if (len(lon_lat_data.keys()) > 0) and runInfo[DO_COLOCATION_KEY] :
            invalidA = lon_lat_data[A_FILE_KEY][INVALID_MASK_KEY] | (aData == varRunInfo[FILL_VALUE_KEY])
            invalidB = lon_lat_data[B_FILE_KEY][INVALID_MASK_KEY] | (bData == varRunInfo[FILL_VALUE_ALT_IN_B_KEY])
            # match up our points in A and B
            (aData, bData, (numberOfMultipleMatchesInA, numberOfMultipleMatchesInB)), \
            (aUnmatchedData,             unmatchedALongitude, unmatchedALatitude), \
            (bUnmatchedData,             unmatchedBLongitude, unmatchedBLatitude) = \
                    collocation.create_colocated_data_with_lon_lat_colocation(aColocationInfomation, bColocationInformation,
                                                                              colocatedLongitude, colocatedLatitude,
                                                                              aData, bData,
                                                                              missingData=varRunInfo[FILL_VALUE_KEY],
                                                                              altMissingDataInB=varRunInfo[FILL_VALUE_ALT_IN_B_KEY],
                                                                              invalidAMask=invalidA,
                                                                              invalidBMask=invalidB)
            
            LOG.debug(str(numberOfMultipleMatchesInA) + " data pairs contain A data points used for multiple matches.")
            LOG.debug(str(numberOfMultipleMatchesInB) + " data pairs contain B data points used for multiple matches.")
            LOG.debug(str(len(aUnmatchedData)) + " A data points could not be matched.")
            LOG.debug(str(len(bUnmatchedData)) + " B data points could not be matched.")
            
            # save the colocated data information in the output files
            aFile.file_object.create_new_variable(technical_name + '-colocated', # TODO, how should this suffix be handled?
                                      missingvalue = varRunInfo[FILL_VALUE_KEY] if FILL_VALUE_KEY in varRunInfo else None,
                                      data = aData,
                                      variabletocopyattributesfrom = technical_name)
            aFile.file_object.add_attribute_data_to_variable(technical_name + '-colocated', 'number of multiple matches', numberOfMultipleMatchesInA)
            aFile.file_object.add_attribute_data_to_variable(technical_name + '-colocated', 'number of unmatched points', len(aUnmatchedData))
            bFile.file_object.create_new_variable(b_variable_technical_name + '-colocated', # TODO, how should this suffix be handled?
                                      missingvalue = varRunInfo[FILL_VALUE_ALT_IN_B_KEY] if FILL_VALUE_ALT_IN_B_KEY in varRunInfo else None,
                                      data = bData,
                                      variabletocopyattributesfrom = b_variable_technical_name)
            bFile.file_object.add_attribute_data_to_variable(b_variable_technical_name + '-colocated', 'number of multiple matches', numberOfMultipleMatchesInB)
            bFile.file_object.add_attribute_data_to_variable(b_variable_technical_name + '-colocated', 'number of unmatched points', len(bUnmatchedData))
            
        else :
            LOG.debug(explanationName + " was not selected for colocation and will be ignored.")
        
    # the end of the loop to examine all the variables
    
    # we're done with the files, so close them up
    aFile.file_object.close()
    bFile.file_object.close()
def reportGen_raw_data_simple_call (aData, bData, variableDisplayName,
                                    epsilon=0.0, missingValue=None,
                                    useThreads=True, includeImages=True,
                                    outputDirectory="./") :
    """
    Generate a report for a single variable given raw data and
    some minimal control settings. This method will also generate
    images for the report if includeImages is True.
    """
    
    LOG.info("Setting up basic information")
    
    aData = array(aData)
    bData = array(bData)
    
    # set up the run info
    runInfo = config_organizer.get_simple_options_dict( )
    runInfo[DO_MAKE_IMAGES_KEY]        = True
    runInfo[DO_MAKE_REPORT_KEY]        = True
    runInfo[DO_MAKE_FORKS_KEY]         = False
    runInfo[DO_CLEAR_MEM_THREADED_KEY] = useThreads
    variableSettings = config_organizer.get_simple_variable_defaults( )
    variableSettings[EPSILON_KEY]             = epsilon
    variableSettings[FILL_VALUE_KEY]          = missingValue
    variableSettings[FILL_VALUE_ALT_IN_B_KEY] = missingValue
    variableSettings[VARIABLE_TECH_NAME_KEY]  = variableDisplayName
    runInfo[MACHINE_INFO_KEY], runInfo[USER_INFO_KEY], runInfo[GLANCE_VERSION_INFO_KEY] = get_run_identification_info()
    outputDirectory = clean_path(outputDirectory)
    setup_dir_if_needed(outputDirectory, "output")
    
    LOG.info("Analyzing " + variableDisplayName)
    
    # if things are the same shape, analyze them and make our images
    if aData.shape == bData.shape :
        
        # setup some values in the variable settings for use in the report
        variableSettings[VARIABLE_DIRECTORY_KEY] = outputDirectory
        variableSettings[VAR_REPORT_PATH_KEY]    = quote(os.path.join(variableDisplayName, 'index.html'))
        variableSettings[DOCUMENTATION_PATH_KEY] = quote(os.path.join(outputDirectory, './' + 'doc.html')) 
        variable_stats = statistics.StatisticalAnalysis.withSimpleData(aData, bData,
                                                                       missingValue, missingValue,
                                                                       None, None,
        variableSettings[TIME_INFO_KEY] = datetime.datetime.ctime(datetime.datetime.now()) # TODO, move this to util?
        didPass, epsilon_failed_fraction, \
        non_finite_fail_fraction, r_squared_value \
            = variable_stats.check_pass_or_fail(epsilon_failure_tolerance=variableSettings[EPSILON_FAIL_TOLERANCE_KEY] if EPSILON_FAIL_TOLERANCE_KEY in variableSettings else numpy.nan,
                                                epsilon_failure_tolerance_default=runInfo[EPSILON_FAIL_TOLERANCE_KEY],
                                                non_finite_data_tolerance=variableSettings[NONFINITE_TOLERANCE_KEY]  if NONFINITE_TOLERANCE_KEY  in variableSettings else numpy.nan,
                                                non_finite_data_tolerance_default=runInfo[NONFINITE_TOLERANCE_KEY],
                                                total_data_failure_tolerance=variableSettings[TOTAL_FAIL_TOLERANCE_KEY] if TOTAL_FAIL_TOLERANCE_KEY in variableSettings else numpy.nan,
                                                total_data_failure_tolerance_default=runInfo[TOTAL_FAIL_TOLERANCE_KEY],
                                                min_acceptable_r_squared=variableSettings[MIN_OK_R_SQUARED_COEFF_KEY] if MIN_OK_R_SQUARED_COEFF_KEY in variableSettings else numpy.nan,
                                                min_acceptable_r_squared_default=runInfo[MIN_OK_R_SQUARED_COEFF_KEY],
                                                )
        variableSettings[DID_VARIABLE_PASS_KEY] = didPass
        
        # to hold the names of any images created
        image_names = {
                        ORIGINAL_IMAGES_KEY: [ ],
                        COMPARED_IMAGES_KEY: [ ]
                        }
        
        # if we need the images, make them now
        if includeImages :
            
            LOG.info("Plotting images for " + variableDisplayName)
            
            plotFunctionGenerationObjects = [ ]
            
            # add the function to make the histogram and scatter plot
            plotFunctionGenerationObjects.append(plotcreate.BasicComparisonPlotsFunctionFactory())
            
            # add the function to do basic imshow images
            plotFunctionGenerationObjects.append(plotcreate.IMShowPlotFunctionFactory())
            
            # plot our lon/lat related info
            image_names[ORIGINAL_IMAGES_KEY], image_names[COMPARED_IMAGES_KEY] = \
                plot.plot_and_save_comparison_figures \
                        (aData, bData,
                         plotFunctionGenerationObjects,
                         outputDirectory,
                         variableDisplayName,
                         epsilon,
                         missingValue,
                         lonLatDataDict=None,
                         makeSmall=True,
                         doFork=False,
                         shouldClearMemoryWithThreads=useThreads,
                         shouldUseSharedRangeForOriginal=True)
            
(no author)'s avatar
(no author) committed
            LOG.info("\tfinished creating figures for: " + variableDisplayName)
        files = {
                 A_FILE_TITLE_KEY: {
                                    PATH_KEY:          "raw data input",
                                    LAST_MODIFIED_KEY: "unknown",
                                    MD5SUM_KEY:        "n/a"
                                    },
                 B_FILE_TITLE_KEY: {
                                    PATH_KEY:          "raw data input",
                                    LAST_MODIFIED_KEY: "unknown",
                                    MD5SUM_KEY:        "n/a"
                                    }
                }
(no author)'s avatar
(no author) committed
        LOG.info ('Generating report for: ' + variableDisplayName) 
        report.generate_and_save_variable_report(files,
                                                 variableSettings, runInfo,
                                                 { },
                                                 image_names,
                                                 outputDirectory, "index.html")
        
        # make the glossary page
(no author)'s avatar
(no author) committed
        LOG.info ('Generating glossary page')
        report.generate_and_save_doc_page(statistics.StatisticalAnalysis.doc_strings(), outputDirectory)
        
    else :
        message = (variableDisplayName + ' ' + 
                'could not be compared. This may be because the data for this variable does not match in shape ' +
                'between the two files (file A data shape: ' + str(aData.shape) + '; file B data shape: '
                + str(bData.shape) + ').')
        LOG.warn(message)

def inspect_library_call (a_path, var_list=[ ],
                          options_set={ },
                          # todo, this doesn't yet do anything
                          do_document=False,
                          # todo, the output channel does nothing at the moment
                          output_channel=sys.stdout) :
    this method handles the actual work of the inspectReport command line tool
    and can also be used as a library routine, pass in the slightly parsed
    command line input, or call it as a library function... be sure to fill
    out the options
    
    TODO at the moment the options are very brittle and need to be fully filled
    or this method will fail badly (note: the addition of some glance defaults
    has minimized the problem, but you still need to be careful when dealing with
    optional boolean values. this needs more work.)
    """
    
    # load the user settings from either the command line or a user defined config file
    pathsTemp, runInfo, defaultValues, requestedNames, usedConfigFile = config_organizer.load_config_or_options(a_path, None, # there is no B path
                                                                                                                options_set,
                                                                                                                requestedVars = var_list)
    # information for debugging purposes
    LOG.debug('paths: ' +           str(pathsTemp))
    LOG.debug('defaults: ' +        str(defaultValues))
    LOG.debug('run information: ' + str(runInfo))
    
    # if we wouldn't generate anything, just stop now
    if (not runInfo[DO_MAKE_IMAGES_KEY]) and (not runInfo[DO_MAKE_REPORT_KEY]) :
        LOG.warn("User selection of no image generation and no report generation will result in no " +
                 "content being generated. Aborting generation function.")
        return
    
    # hang onto info to identify who/what/when/where/etc. the report is being run by/for 
    runInfo[MACHINE_INFO_KEY], runInfo[USER_INFO_KEY], runInfo[GLANCE_VERSION_INFO_KEY] = get_run_identification_info()
    setup_dir_if_needed(pathsTemp[OUT_FILE_KEY], "output")
    # open the file
    files = {}
    LOG.info("Processing File A:")
    aFile = dataobj.FileInfo(pathsTemp[A_FILE_KEY])
    files[A_FILE_TITLE_KEY] = aFile.get_old_info_dictionary() # FUTURE move to actually using the file object to generate the report
        LOG.warn("Unable to continue with examination because file (" + pathsTemp[A_FILE_KEY] + ") could not be opened.")
        sys.exit(1)
    
    # get information about the names the user requested
    finalNames, nameStats[POSSIBLE_NAMES_KEY] = config_organizer.resolve_names_one_file(aFile.file_object,
                                                                                        defaultValues, # TODO, might need a different default set
                                                                                        requestedNames,
                                                                                        usedConfigFile)
    LOG.debug("output dir: " + str(pathsTemp[OUT_FILE_KEY]))
    
    # return for lon_lat_data variables will be in the form 
    #{LON_KEY: longitude_data,      LAT_KEY: latitude_data,      INVALID_MASK_KEY: spaciallyInvalidMaskData}
    # or { } if there is no lon/lat info
    lon_lat_data = { }
    spatialInfo  = { }
    try :
        lon_lat_data, spatialInfo = handle_lon_lat_info_for_one_file (runInfo, aFile)
    except ValueError, vle :
        LOG.warn("Error while loading longitude or latitude: ")
    # if there is an approved lon/lat shape, hang on to that for future variable data shape checks
    good_shape_from_lon_lat = None
    if len(lon_lat_data.keys()) > 0:
        good_shape_from_lon_lat = lon_lat_data[LON_KEY].shape
    
    # go through each of the possible variables in our files
    # and make a report section with images for whichever ones we can
    variableInspections = { }
    for displayName in finalNames:
        
        # pull out the information for this variable analysis run
        varRunInfo = finalNames[displayName].copy()
        
        # get the various names
        technical_name, _, explanationName = _get_name_info_for_variable(displayName, varRunInfo)
        # make sure that it's possible to load this variable
        if not(aFile.file_object.is_loadable_type(technical_name)) :
            LOG.warn(displayName + " is of a type that cannot be loaded using current file handling libraries included with Glance." +
                    " Skipping " + displayName + ".")
            continue
        
        LOG.info('analyzing: ' + explanationName)
        
        # load the variable data
        aData = load_variable_data(aFile.file_object, technical_name,
                                   dataFilter = varRunInfo[FILTER_FUNCTION_A_KEY] if FILTER_FUNCTION_A_KEY in varRunInfo else None,
                                   variableToFilterOn = varRunInfo[VAR_FILTER_NAME_A_KEY] if VAR_FILTER_NAME_A_KEY in varRunInfo else None,
                                   variableBasedFilter = varRunInfo[VAR_FILTER_FUNCTION_A_KEY] if VAR_FILTER_FUNCTION_A_KEY in varRunInfo else None,
                                   altVariableFileObject = dataobj.FileInfo(varRunInfo[VAR_FILTER_ALT_FILE_A_KEY]).file_object if VAR_FILTER_ALT_FILE_A_KEY in varRunInfo else None,
                                   fileDescriptionForDisplay = "file A")
        
        # pre-check if this data should be plotted and if it should be compared to the longitude and latitude
        include_images_for_this_variable = ((not(DO_MAKE_IMAGES_KEY in runInfo)) or (runInfo[DO_MAKE_IMAGES_KEY]))
        if DO_MAKE_IMAGES_KEY in varRunInfo :
            include_images_for_this_variable = varRunInfo[DO_MAKE_IMAGES_KEY]
        do_not_test_with_lon_lat = (not include_images_for_this_variable) or (len(lon_lat_data.keys()) <= 0)
        
        # handle vector data
        isVectorData = (MAGNITUDE_VAR_NAME_KEY in varRunInfo)  and (DIRECTION_VAR_NAME_KEY  in varRunInfo)
        # check if this data can be examined 
        # (don't compare lon/lat sizes if we won't be plotting)
        if ( do_not_test_with_lon_lat or (aData.shape == good_shape_from_lon_lat) ) :
            
            # check to see if there is a directory to put information about this variable in,
            # if not then create it
            variableDir = os.path.join(pathsTemp[OUT_FILE_KEY], './' + displayName)
            varRunInfo[VARIABLE_DIRECTORY_KEY] = variableDir
            varRunInfo[VAR_REPORT_PATH_KEY]    = quote(os.path.join(displayName, 'index.html'))
            LOG.debug ("Directory selected for variable information: " + varRunInfo[VAR_REPORT_PATH_KEY])
            setup_dir_if_needed(variableDir, "variable")
            
            # form the doc and config paths relative to where the variable is
            upwardPath = './'
            for number in range(len(displayName.split('/'))) : # TODO this is not general to windows
                upwardPath = os.path.join(upwardPath, '../')
            varRunInfo[DOCUMENTATION_PATH_KEY] = quote(os.path.join(upwardPath, 'doc.html'))
            if CONFIG_FILE_NAME_KEY in runInfo :
                varRunInfo[CONFIG_FILE_PATH_KEY] = quote(os.path.join(upwardPath, runInfo[CONFIG_FILE_NAME_KEY]))
            # figure out the masks we want, and then do our statistical analysis
            mask_a_to_use = None if do_not_test_with_lon_lat else lon_lat_data[INVALID_MASK_KEY]
            
            variable_stats = statistics.StatisticalInspectionAnalysis.withSimpleData(aData,
                                                                                     missingValue=varRunInfo[FILL_VALUE_KEY],
                                                                                     ignoreMask=mask_a_to_use).dictionary_form()
            
            # add a little additional info to our variable run info before we squirrel it away
            varRunInfo[TIME_INFO_KEY] = datetime.datetime.ctime(datetime.datetime.now())  # todo is this needed?
            
            # to hold the names of any images created
            image_names = {
                            ORIGINAL_IMAGES_KEY: [ ],
                            COMPARED_IMAGES_KEY: [ ]
                            }
            
            # create the images for this variable
            if (include_images_for_this_variable) :
                
                plotFunctionGenerationObjects = [ ]
                
                # we are always going to want to draw a basic histogram of the data values to tell which
                # occur most frequently
                plotFunctionGenerationObjects.append(plotcreate.DataHistogramPlotFunctionFactory())
                # if it's vector data with longitude and latitude, quiver plot it on the Earth
                if isVectorData and (not do_not_test_with_lon_lat) :
                    # TODO replace this at some point
                    #plotFunctionGenerationObjects.append(plotcreate.MappedQuiverPlotFunctionFactory())
                    pass
                
                # if the data is one dimensional we can plot it as lines
                elif   (len(aData.shape) is 1) : 
                    plotFunctionGenerationObjects.append(plotcreate.InspectLinePlotsFunctionFactory())
                
                # if the data is 2D we have some options based on the type of data
                elif (len(aData.shape) is 2) :
                    # if the data is not mapped to a longitude and latitude, just show it as an image
                    if (do_not_test_with_lon_lat) :
                        plotFunctionGenerationObjects.append(plotcreate.InspectIMShowPlotFunctionFactory())
                    # if it's 2D and mapped to the Earth, contour plot it on the earth
                    else :
                        plotFunctionGenerationObjects.append(plotcreate.InspectMappedContourPlotFunctionFactory())
                
                # if there's magnitude and direction data, figure out the u and v, otherwise these will be None
                aUData, aVData = get_UV_info_from_magnitude_direction_info (aFile.file_object,
                                                                            varRunInfo[MAGNITUDE_VAR_NAME_KEY] if (MAGNITUDE_VAR_NAME_KEY in varRunInfo)   else None,
                                                                            varRunInfo[DIRECTION_VAR_NAME_KEY] if (DIRECTION_VAR_NAME_KEY in varRunInfo)   else None,
                                                                            lon_lat_data[INVALID_MASK_KEY]     if (INVALID_MASK_KEY       in lon_lat_data) else None )
                image_names[ORIGINAL_IMAGES_KEY], image_names[COMPARED_IMAGES_KEY] = \
                    plot.plot_and_save_comparison_figures \
                            (aData, None, # there is no b data
                             None, # there is no epsilon
                             dataRanges     = varRunInfo[DISPLAY_RANGES_KEY]       if DISPLAY_RANGES_KEY       in varRunInfo else None,
                             dataRangeNames = varRunInfo[DISPLAY_RANGE_NAMES_KEY]  if DISPLAY_RANGE_NAMES_KEY  in varRunInfo else None,
                             dataColors     = varRunInfo[DISPLAY_RANGE_COLORS_KEY] if DISPLAY_RANGE_COLORS_KEY in varRunInfo else None,
                             doFork=runInfo[DO_MAKE_FORKS_KEY],
                             shouldClearMemoryWithThreads=runInfo[DO_CLEAR_MEM_THREADED_KEY],
                             shouldUseSharedRangeForOriginal=runInfo[USE_SHARED_ORIG_RANGE_KEY],
                             doPlotSettingsDict = varRunInfo,
                             aUData=aUData, aVData=aVData,
                             fullDPI=       runInfo[DETAIL_DPI_KEY],
                             thumbDPI=      runInfo[THUMBNAIL_DPI_KEY],
                             units_a=       varRunInfo[VAR_UNITS_A_KEY] if VAR_UNITS_A_KEY in varRunInfo else None,
                             histRange=varRunInfo[HISTOGRAM_RANGE_KEY] if HISTOGRAM_RANGE_KEY in varRunInfo else None)
                
                LOG.info("\tfinished creating figures for: " + explanationName)
            
            # create the report page for this variable
                # hang on to some info on our variable
                variableInspections[displayName] = {
                                                    }
                
                LOG.info ('\tgenerating report for: ' + explanationName) 
                report.generate_and_save_inspect_variable_report(files, varRunInfo, runInfo,
                                                                 variable_stats, spatialInfo, image_names,
                                                                 varRunInfo[VARIABLE_DIRECTORY_KEY], "index.html")
        # if we can't do anything with the variable, we should tell the user 
            message = (explanationName + ' could not be examined. '
                     + 'This may be because the data for this variable (data shape: '
                     + str(aData.shape) + ') does not match the shape of the selected '
                     + 'longitude ' + str(good_shape_from_lon_lat) + ' and '
                     + 'latitude '  + str(good_shape_from_lon_lat) + ' variables.')
            LOG.warn(message)
        
    # the end of the loop to examine all the variables
    
    # generate our general report pages once we've analyzed all the variables
        runInfo[TIME_INFO_KEY] = datetime.datetime.ctime(datetime.datetime.now())
        
        # TODO, create a new report generation function here
        # make the main summary report
        LOG.info ('generating summary report')
        report.generate_and_save_inspection_summary_report (files,
                                                            pathsTemp[OUT_FILE_KEY], 'index.html',
                                                            runInfo,
                                                            variableInspections,
                                                            spatialInfo,
                                                            nameStats)
        
        # make the glossary
        LOG.info ('generating glossary')
        report.generate_and_save_doc_page(statistics.StatisticalInspectionAnalysis.doc_strings(), pathsTemp[OUT_FILE_KEY])
def reportGen_library_call (a_path, b_path, var_list=[ ],
                            options_set={ },
                            # todo, this doesn't yet do anything
                            do_document=False,
                            # todo, the output channel does nothing at the moment
                            output_channel=sys.stdout) :
    """
    this method handles the actual work of the reportGen command line tool
    and can also be used as a library routine, pass in the slightly parsed
    command line input, or call it as a library function... be sure to fill
    out the options
    TODO at the moment the options are very brittle and need to be fully filled
    or this method will fail badly (note: the addition of some glance defaults
    has minimized the problem, but you still need to be careful when dealing with
    optional boolean values. this needs more work.)
    # have all the variables passed test criteria set for them?
    # if no criteria were set then this will be true
    didPassAll = True
    do_pass_fail = options_set[DO_TEST_PASSFAIL_KEY] # todo, this is a temporary hack, should be loaded with other options
    # load the user settings from either the command line or a user defined config file
    pathsTemp, runInfo, defaultValues, requestedNames, usedConfigFile = config_organizer.load_config_or_options(a_path, b_path,
                                                                                                                options_set,
                                                                                                                requestedVars = var_list)
    
    # note some of this information for debugging purposes
    LOG.debug('paths: ' +           str(pathsTemp))
    LOG.debug('defaults: ' +        str(defaultValues))
    LOG.debug('run information: ' + str(runInfo))
    
    # if we wouldn't generate anything, just stop now
    if (not runInfo[DO_MAKE_IMAGES_KEY]) and (not runInfo[DO_MAKE_REPORT_KEY]) :
        LOG.warn("User selection of no image generation and no report generation will result in no " +
                 "content being generated. Aborting generation function.")
        if do_pass_fail :
            return 0 # nothing went wrong, we just had nothing to do!
        else :
            return
    # hang onto info to identify who/what/when/where/etc. the report is being run by/for 
    runInfo[MACHINE_INFO_KEY], runInfo[USER_INFO_KEY], runInfo[GLANCE_VERSION_INFO_KEY] = get_run_identification_info()
    setup_dir_if_needed(pathsTemp[OUT_FILE_KEY], "output")
    # open the files
    files = {}
    LOG.info("Processing File A:")
    aFile = dataobj.FileInfo(pathsTemp[A_FILE_KEY])
    files[A_FILE_TITLE_KEY] = aFile.get_old_info_dictionary() # FUTURE move to actually using the file object to generate the report
        LOG.warn("Unable to continue with comparison because file a (" + pathsTemp[A_FILE_KEY] + ") could not be opened.")
        sys.exit(1)
    LOG.info("Processing File B:")
    bFile = dataobj.FileInfo(pathsTemp[B_FILE_KEY]) 
    files[B_FILE_TITLE_KEY] = bFile.get_old_info_dictionary() # FUTURE move to actually using the file object to generate the report
        LOG.warn("Unable to continue with comparison because file b (" + pathsTemp[B_FILE_KEY] + ") could not be opened.")
        sys.exit(1)
    
    # get information about the names the user requested
    finalNames, nameStats = config_organizer.resolve_names(aFile.file_object,
                                                           bFile.file_object,
                                                           defaultValues,
                                                           requestedNames,
                                                           usedConfigFile)
    LOG.debug("output dir: " + str(pathsTemp[OUT_FILE_KEY]))
    # return for lon_lat_data variables will be in the form 
    #{LON_KEY: longitude_data,      LAT_KEY: latitude_data,      INVALID_MASK_KEY: spaciallyInvalidMaskData}
        lon_lat_data, spatialInfo = handle_lon_lat_info (runInfo, aFile, bFile, pathsTemp[OUT_FILE_KEY],
                                                         should_make_images = runInfo[DO_MAKE_IMAGES_KEY],
                                                         fullDPI=runInfo[DETAIL_DPI_KEY], thumbDPI=runInfo[THUMBNAIL_DPI_KEY])
    except ValueError, vle :
        LOG.warn("Error while loading longitude or latitude: ")
        exit(1)
    except VariableComparisonError, vce :
        LOG.warn("Error while comparing longitude or latitude: ")
    # if there is an approved lon/lat shape, hang on to that for future checks
    good_shape_from_lon_lat = None
    if len(lon_lat_data.keys()) > 0:
        good_shape_from_lon_lat = lon_lat_data[COMMON_KEY][LON_KEY].shape
    # this will hold information for the summary report
    # it will be in the form
    # [displayName] =  {
    #                    PASSED_EPSILON_PERCENT_KEY: percent ok with this epsilon,
    #                    FINITE_SIMILAR_PERCENT_KEY: percent with the same finiteness,
    #                    R_SQUARED_COEFF_VALUE_KEY:  the r squared correlation coefficient,
    #                    VARIABLE_RUN_INFO_KEY:      the detailed variable run information
    #                    }
    
    # go through each of the possible variables in our files
    # and make a report section with images for whichever ones we can
        
        # pull out the information for this variable analysis run
        varRunInfo = finalNames[displayName].copy()
        # get the various names
        technical_name, b_variable_technical_name, \
                explanationName = _get_name_info_for_variable(displayName, varRunInfo)
        # make sure that it's possible to load this variable
        if not(aFile.file_object.is_loadable_type(technical_name)) or not(bFile.file_object.is_loadable_type(b_variable_technical_name)) :
            LOG.warn(displayName + " is of a type that cannot be loaded using current file handling libraries included with Glance." +
                    " Skipping " + displayName + ".")
            continue
        
(no author)'s avatar
(no author) committed
        LOG.info('analyzing: ' + explanationName)
        aData = load_variable_data(aFile.file_object, technical_name,
                                   dataFilter = varRunInfo[FILTER_FUNCTION_A_KEY] if FILTER_FUNCTION_A_KEY in varRunInfo else None,
                                   variableToFilterOn = varRunInfo[VAR_FILTER_NAME_A_KEY] if VAR_FILTER_NAME_A_KEY in varRunInfo else None,
                                   variableBasedFilter = varRunInfo[VAR_FILTER_FUNCTION_A_KEY] if VAR_FILTER_FUNCTION_A_KEY in varRunInfo else None,
                                   altVariableFileObject = dataobj.FileInfo(varRunInfo[VAR_FILTER_ALT_FILE_A_KEY]).file_object if VAR_FILTER_ALT_FILE_A_KEY in varRunInfo else None,
                                   fileDescriptionForDisplay = "file A")
        bData = load_variable_data(bFile.file_object, b_variable_technical_name,
                                   dataFilter = varRunInfo[FILTER_FUNCTION_B_KEY] if FILTER_FUNCTION_B_KEY in varRunInfo else None,
                                   variableToFilterOn = varRunInfo[VAR_FILTER_NAME_B_KEY] if VAR_FILTER_NAME_B_KEY in varRunInfo else None,
                                   variableBasedFilter = varRunInfo[VAR_FILTER_FUNCTION_B_KEY] if VAR_FILTER_FUNCTION_B_KEY in varRunInfo else None,
                                   altVariableFileObject = dataobj.FileInfo(varRunInfo[VAR_FILTER_ALT_FILE_B_KEY]).file_object if VAR_FILTER_ALT_FILE_B_KEY in varRunInfo else None,
                                   fileDescriptionForDisplay = "file B")
        # pre-check if this data should be plotted and if it should be compared to the longitude and latitude
        include_images_for_this_variable = ((not(DO_MAKE_IMAGES_KEY in runInfo)) or (runInfo[DO_MAKE_IMAGES_KEY]))
        if DO_MAKE_IMAGES_KEY in varRunInfo :
            include_images_for_this_variable = varRunInfo[DO_MAKE_IMAGES_KEY]
        do_not_test_with_lon_lat = (not include_images_for_this_variable) or (len(lon_lat_data.keys()) <= 0)
        
        isVectorData = ( (MAGNITUDE_VAR_NAME_KEY   in varRunInfo) and (DIRECTION_VAR_NAME_KEY   in varRunInfo) and
                         (MAGNITUDE_B_VAR_NAME_KEY in varRunInfo) and (DIRECTION_B_VAR_NAME_KEY in varRunInfo) )
        # check if this data can be displayed but
        # don't compare lon/lat sizes if we won't be plotting
        if ( (aData.shape == bData.shape) 
             and 
             ( do_not_test_with_lon_lat
              or
              ((aData.shape == good_shape_from_lon_lat) and (bData.shape == good_shape_from_lon_lat)) ) ) :
            
            # check to see if there is a directory to put information about this variable in,
            # if not then create it
            variableDir = os.path.join(pathsTemp[OUT_FILE_KEY], './' + displayName)
            varRunInfo[VARIABLE_DIRECTORY_KEY] = variableDir
            varRunInfo[VAR_REPORT_PATH_KEY] = quote(os.path.join(displayName, 'index.html'))
            LOG.debug ("Directory selected for variable information: " + varRunInfo[VAR_REPORT_PATH_KEY])
            setup_dir_if_needed(variableDir, "variable")
            # form the doc and config paths relative to where the variable is
            upwardPath = './'
            for number in range(len(displayName.split('/'))) : # TODO this is not general to windows
                upwardPath = os.path.join(upwardPath, '../')
            varRunInfo[DOCUMENTATION_PATH_KEY]   = quote(os.path.join(upwardPath, 'doc.html'))
            if CONFIG_FILE_NAME_KEY in runInfo :
                varRunInfo[CONFIG_FILE_PATH_KEY] = quote(os.path.join(upwardPath, runInfo[CONFIG_FILE_NAME_KEY]))
            # figure out the masks we want, and then do our statistical analysis
            mask_a_to_use = None if do_not_test_with_lon_lat else lon_lat_data[A_FILE_KEY][INVALID_MASK_KEY]
            mask_b_to_use = None if do_not_test_with_lon_lat else lon_lat_data[B_FILE_KEY][INVALID_MASK_KEY]
            LOG.debug("Analyzing " + displayName + " statistically.")
            variable_stats = statistics.StatisticalAnalysis.withSimpleData(aData, bData,
                                                                           varRunInfo[FILL_VALUE_KEY], varRunInfo[FILL_VALUE_ALT_IN_B_KEY],
                                                                           varRunInfo[EPSILON_KEY], varRunInfo[EPSILON_PERCENT_KEY])
            # add a little additional info to our variable run info before we squirrel it away
            varRunInfo[TIME_INFO_KEY] = datetime.datetime.ctime(datetime.datetime.now())  # todo is this needed?
            didPass, epsilon_failed_fraction, \
                     non_finite_fail_fraction, \
                     r_squared_value = variable_stats.check_pass_or_fail(epsilon_failure_tolerance=varRunInfo[EPSILON_FAIL_TOLERANCE_KEY] if EPSILON_FAIL_TOLERANCE_KEY in varRunInfo else numpy.nan,
                                                epsilon_failure_tolerance_default=defaultValues[EPSILON_FAIL_TOLERANCE_KEY],
                                                non_finite_data_tolerance=varRunInfo[NONFINITE_TOLERANCE_KEY]  if NONFINITE_TOLERANCE_KEY in varRunInfo else numpy.nan,
                                                non_finite_data_tolerance_default=defaultValues[NONFINITE_TOLERANCE_KEY],
                                                total_data_failure_tolerance=varRunInfo[TOTAL_FAIL_TOLERANCE_KEY] if TOTAL_FAIL_TOLERANCE_KEY in varRunInfo else numpy.nan,
                                                total_data_failure_tolerance_default=defaultValues[TOTAL_FAIL_TOLERANCE_KEY],
                                                min_acceptable_r_squared=varRunInfo[MIN_OK_R_SQUARED_COEFF_KEY] if MIN_OK_R_SQUARED_COEFF_KEY in varRunInfo else numpy.nan,
                                                min_acceptable_r_squared_default=defaultValues[MIN_OK_R_SQUARED_COEFF_KEY],
                                                )
            
            varRunInfo[DID_VARIABLE_PASS_KEY] = didPass
            # update the overall pass status
            if didPass is not None :
                didPassAll = didPassAll & didPass
            
            # based on the settings and whether the variable passsed or failed,
            # should we include images for this variable?
            if (DO_IMAGES_ONLY_ON_FAIL_KEY in varRunInfo) and varRunInfo[DO_IMAGES_ONLY_ON_FAIL_KEY] :
                include_images_for_this_variable = include_images_for_this_variable and (not didPass)
                varRunInfo[DO_MAKE_IMAGES_KEY] = include_images_for_this_variable
            # to hold the names of any images created
            image_names = {
                            ORIGINAL_IMAGES_KEY: [ ],
                            COMPARED_IMAGES_KEY: [ ]
                            }
            
            # create the images for this variable
            if (include_images_for_this_variable) :
                
                # if there's magnitude and direction data, figure out the u and v, otherwise these will be None
                aUData, aVData = get_UV_info_from_magnitude_direction_info (aFile.file_object,
                                                                            varRunInfo[MAGNITUDE_VAR_NAME_KEY] if (MAGNITUDE_VAR_NAME_KEY) in varRunInfo else None,
                                                                            varRunInfo[DIRECTION_VAR_NAME_KEY] if (DIRECTION_VAR_NAME_KEY) in varRunInfo else None,
                                                                            lon_lat_data[A_FILE_KEY][INVALID_MASK_KEY]
                                                                            if (A_FILE_KEY in lon_lat_data) and (INVALID_MASK_KEY in lon_lat_data[A_FILE_KEY]) else None)
                bUData, bVData = get_UV_info_from_magnitude_direction_info (bFile.file_object,
                                                                            varRunInfo[MAGNITUDE_B_VAR_NAME_KEY] if (MAGNITUDE_B_VAR_NAME_KEY) in varRunInfo else None,
                                                                            varRunInfo[DIRECTION_B_VAR_NAME_KEY] if (DIRECTION_B_VAR_NAME_KEY) in varRunInfo else None,
                                                                            lon_lat_data[B_FILE_KEY][INVALID_MASK_KEY]
                                                                            if (B_FILE_KEY in lon_lat_data) and (INVALID_MASK_KEY in lon_lat_data[B_FILE_KEY]) else None)
                
                # if the data is the same size, we can always make our basic statistical comparison plots
                if (aData.shape == bData.shape) :
                    plotFunctionGenerationObjects.append(plotcreate.BasicComparisonPlotsFunctionFactory())
                
                # if the bin and tuple are defined, try to analyze the data as complex
                # multidimentional information requiring careful sampling
                if (BIN_INDEX_KEY in varRunInfo) and (TUPLE_INDEX_KEY in varRunInfo) :
                    plotFunctionGenerationObjects.append(plotcreate.BinTupleAnalysisFunctionFactory())
                else : # if it's not bin/tuple, there are lots of other posibilities
                    
                    # if it's vector data with longitude and latitude, quiver plot it on the Earth
                    if isVectorData and (not do_not_test_with_lon_lat) :
                        plotFunctionGenerationObjects.append(plotcreate.MappedQuiverPlotFunctionFactory())
                    # if the data is one dimensional we can plot it as lines
                    elif   (len(aData.shape) is 1) : 
                        plotFunctionGenerationObjects.append(plotcreate.LinePlotsFunctionFactory())
                    # if the data is 2D we have some options based on the type of data
                    elif (len(aData.shape) is 2) :
                        
                        # if the data is not mapped to a longitude and latitude, just show it as an image
                        if (do_not_test_with_lon_lat) :
                            plotFunctionGenerationObjects.append(plotcreate.IMShowPlotFunctionFactory())
                        
                        # if it's 2D and mapped to the Earth, contour plot it on the earth
                        else :
                            plotFunctionGenerationObjects.append(plotcreate.MappedContourPlotFunctionFactory())
                image_names[ORIGINAL_IMAGES_KEY], image_names[COMPARED_IMAGES_KEY] = \
                    plot.plot_and_save_comparison_figures \
                            (aData, bData,
                             plotFunctionGenerationObjects,
                             varRunInfo[EPSILON_KEY],
                             varRunInfo[FILL_VALUE_KEY],
                             missingValueAltInB = varRunInfo[FILL_VALUE_ALT_IN_B_KEY] if FILL_VALUE_ALT_IN_B_KEY in varRunInfo else None,
                             dataRanges     = varRunInfo[DISPLAY_RANGES_KEY]       if DISPLAY_RANGES_KEY       in varRunInfo else None,
                             dataRangeNames = varRunInfo[DISPLAY_RANGE_NAMES_KEY]  if DISPLAY_RANGE_NAMES_KEY  in varRunInfo else None,
                             dataColors     = varRunInfo[DISPLAY_RANGE_COLORS_KEY] if DISPLAY_RANGE_COLORS_KEY in varRunInfo else None,
                             doFork=runInfo[DO_MAKE_FORKS_KEY],
                             shouldClearMemoryWithThreads=runInfo[DO_CLEAR_MEM_THREADED_KEY],
                             shouldUseSharedRangeForOriginal=runInfo[USE_SHARED_ORIG_RANGE_KEY],
                             doPlotSettingsDict = varRunInfo,
                             aUData=aUData, aVData=aVData,
                             binIndex=      varRunInfo[BIN_INDEX_KEY]       if BIN_INDEX_KEY       in varRunInfo else None,
                             tupleIndex=    varRunInfo[TUPLE_INDEX_KEY]     if TUPLE_INDEX_KEY     in varRunInfo else None,
                             binName=       varRunInfo[BIN_NAME_KEY]        if BIN_NAME_KEY        in varRunInfo else 'bin',
                             tupleName=     varRunInfo[TUPLE_NAME_KEY]      if TUPLE_NAME_KEY      in varRunInfo else 'tuple',
                             epsilonPercent=varRunInfo[EPSILON_PERCENT_KEY] if EPSILON_PERCENT_KEY in varRunInfo else None,
                             fullDPI=       runInfo[DETAIL_DPI_KEY],
                             thumbDPI=      runInfo[THUMBNAIL_DPI_KEY],
                             units_a=       varRunInfo[VAR_UNITS_A_KEY]     if VAR_UNITS_A_KEY     in varRunInfo else None,
                             units_b=       varRunInfo[VAR_UNITS_B_KEY]     if VAR_UNITS_B_KEY     in varRunInfo else None,
                            )#histRange=     varRunInfo[HISTOGRAM_RANGE_KEY] if HISTOGRAM_RANGE_KEY in varRunInfo else None)
(no author)'s avatar
(no author) committed
                LOG.info("\tfinished creating figures for: " + explanationName)
            
            # create the report page for this variable
                
                # hang on to our good % and other info to describe our comparison
                epsilonPassedPercent = (1.0 -  epsilon_failed_fraction) * 100.0
                finitePassedPercent  = (1.0 - non_finite_fail_fraction) * 100.0 
                variableComparisons[displayName] = {
                                                    PASSED_EPSILON_PERCENT_KEY: epsilonPassedPercent,
                                                    FINITE_SIMILAR_PERCENT_KEY: finitePassedPercent,
                                                    R_SQUARED_COEFF_VALUE_KEY:  r_squared_value,
                                                    VARIABLE_RUN_INFO_KEY:      varRunInfo
(no author)'s avatar
(no author) committed
                LOG.info ('\tgenerating report for: ' + explanationName) 
                report.generate_and_save_variable_report(files,
                                                         varRunInfo, runInfo,
                                                         varRunInfo[VARIABLE_DIRECTORY_KEY], "index.html")
        # if we can't compare the variable, we should tell the user 
        else :
                     'could not be compared. This may be because the data for this variable does not match in shape ' +
                     'between the two files (file A data shape: ' + str(aData.shape) + '; file B data shape: '
                     + str(bData.shape) + ')')
            if do_not_test_with_lon_lat :
                message = message + '.'
            else :
                message = (message + ' or the data may not match the shape of the selected '
                     + 'longitude ' + str(good_shape_from_lon_lat) + ' and '
                     + 'latitude '  + str(good_shape_from_lon_lat) + ' variables.')
        
    # the end of the loop to examine all the variables
    # generate our general report pages once we've analyzed all the variables
        runInfo[TIME_INFO_KEY] = datetime.datetime.ctime(datetime.datetime.now())
(no author)'s avatar
(no author) committed
        LOG.info ('generating summary report')
        report.generate_and_save_summary_report(files,
                                                pathsTemp[OUT_FILE_KEY], 'index.html',
                                                runInfo,
                                                variableComparisons, 
                                                spatialInfo,
                                                nameStats)
(no author)'s avatar
(no author) committed
        LOG.info ('generating glossary')
        report.generate_and_save_doc_page(statistics.StatisticalAnalysis.doc_strings(), pathsTemp[OUT_FILE_KEY])
    returnCode = 0 if didPassAll else 2 # return 2 only if some of the variables failed
    
    # if we are reporting the pass / fail, return an appropriate status code
    if do_pass_fail :
        LOG.debug("Pass/Fail return code: " + str(returnCode))
        return returnCode

def stats_library_call(afn, bfn, var_list=[ ],
                       options_set={ },
                       do_document=False,
                       output_channel=sys.stdout): 
    """
    this method handles the actual work of the stats command line tool and
    can also be used as a library routine, simply pass in an output channel
    and/or use the returned dictionary of statistics for your own form of
    display.
    TODO, should this move to a different file?
    """