Newer
Older
#!/usr/bin/env python
# encoding: utf-8
"""
Top-level routines to compare two files.
Created by rayg Apr 2009.
Copyright (c) 2009 University of Wisconsin SSEC. All rights reserved.
"""
(no author)
committed
import os, sys, logging, re, subprocess, datetime
(no author)
committed
import imp as imp
from numpy import *
(no author)
committed
import pkg_resources
import glance.io as io
import glance.delta as delta
(no author)
committed
import glance.report as report
from urllib import quote
# these are the built in defaults for the settings
glance_setting_defaults = {'shouldIncludeReport': True,
'shouldIncludeImages': False,
'doFork': False}
# these are the built in longitude/latitude defaults
glance_lon_lat_defaults = {'longitude': 'pixel_longitude',
'latitude': 'pixel_latitude',
(no author)
committed
'lon_lat_epsilon': 0.0,
'data_filter_function_lon_in_a': None,
'data_filter_function_lat_in_a': None,
'data_filter_function_lon_in_b': None,
'data_filter_function_lat_in_b': None
}
(no author)
committed
# these are the built in default settings for the variable analysis
(no author)
committed
glance_analysis_defaults = {'epsilon': 0.0,
'missing_value': None,
'epsilon_failure_tolerance': 0.0,
'nonfinite_data_tolerance': 0.0
(no author)
committed
}
def _cvt_names(namelist, epsilon, missing):
""""if variable names are of the format name:epsilon, yield name,epsilon, missing
otherwise yield name,default-epsilon,default-missing
"""
for name in namelist:
if ':' not in name:
yield name, epsilon
else:
n,e,m = name.split(':')
if not e: e = epsilon
else: e = float(e)
if not m: m = missing
else: m = float(m)
yield n, e, m
def _parse_varnames(names, terms, epsilon=0.0, missing=None):
"""filter variable names and substitute default epsilon and missing settings if none provided
returns name,epsilon,missing triples
>>> _parse_varnames( ['foo','bar', 'baz', 'zoom', 'cat'], ['f..:0.5:-999', 'ba.*:0.001', 'c.t::-9999'], 1e-7 )
set([('foo', 0.5, -999.0), ('cat', 9.9999999999999995e-08, -9999.0), ('bar', 0.001, None), ('baz', 0.001, None)])
"""
terms = [x.split(':') for x in terms]
terms = [(re.compile(x[0]).match,x[1:]) for x in terms]
def _cvt_em(eps=None, mis=None):
eps = float(eps) if eps else epsilon
mis = float(mis) if mis else missing
return eps, mis
sel = [ ((x,)+_cvt_em(*em)) for x in names for (t,em) in terms if t(x) ]
return set(sel)
def _setup_file(fileNameAndPath, prefexText='') :
'''
open the provided file name/path and extract information on the md5sum and last modification time
optional prefext text may be passed in for informational output formatting
'''
(no author)
committed
# some info to return
fileInfo = {'path': fileNameAndPath}
# check to see if the path exists to be opened
if not (os.path.exists(fileNameAndPath)) :
LOG.warn("Requested file " + fileNameAndPath + " could not be opened because it does not exist.")
return None, fileInfo
# open the file
LOG.info(prefexText + "opening " + fileNameAndPath)
fileNameAndPath = os.path.abspath(os.path.expanduser(fileNameAndPath))
LOG.debug("User provided path after normalization and user expansion: " + fileNameAndPath)
fileObject = io.open(fileNameAndPath)
# get the file md5sum
tempSubProcess = subprocess.Popen("md5sum \'" + fileNameAndPath + "\'", shell=True, stdout=subprocess.PIPE)
(no author)
committed
fileInfo['md5sum'] = tempSubProcess.communicate()[0].split()[0]
LOG.info(prefexText + "file md5sum: " + str(fileInfo['md5sum']))
# get the last modified stamp
statsForFile = os.stat(fileNameAndPath)
(no author)
committed
fileInfo['lastModifiedTime'] = datetime.datetime.fromtimestamp(statsForFile.st_mtime).ctime() # should time zone be forced?
LOG.info (prefexText + "file was last modified: " + fileInfo['lastModifiedTime'])
(no author)
committed
return fileObject, fileInfo
(no author)
committed
def _check_file_names(fileAObject, fileBObject) :
"""
(no author)
committed
get information about the names in the two files and how they compare to each other
"""
# get information about the variables stored in the files
aNames = set(fileAObject())
bNames = set(fileBObject())
# get the variable names they have in common
commonNames = aNames.intersection(bNames)
# which names are unique to only one of the two files?
uniqueToANames = aNames - commonNames
uniqueToBNames = bNames - commonNames
(no author)
committed
return {'sharedVars': commonNames, 'uniqueToAVars': uniqueToANames, 'uniqueToBVars': uniqueToBNames}
def _resolve_names(fileAObject, fileBObject, defaultValues,
requestedNames, usingConfigFileFormat=False) :
"""
figure out which names the two files share and which are unique to each file, as well as which names
were requested and are in both sets
usingConfigFileFormat signals whether the requestedNames parameter will be in the form of the inputed
names from the command line or a more complex dictionary holding information about the names read in
from a configuration file
Note: if we ever need a variable with different names in file A and B to be comparable, this logic
will need to be changed.
"""
# look at the names present in the two files and compare them
nameComparison = _check_file_names(fileAObject, fileBObject)
# figure out which set should be selected based on the user requested names
(no author)
committed
fileCommonNames = nameComparison['sharedVars']
finalNames = {}
if (usingConfigFileFormat) :
# if the user didn't ask for any, try everything
(no author)
committed
if (len(requestedNames) is 0) :
(no author)
committed
finalFromCommandLine = _parse_varnames(fileCommonNames, ['.*'],
defaultValues['epsilon'], defaultValues['missing_value'])
for name, epsilon, missing in finalFromCommandLine :
# we'll use the variable's name as the display name for the time being
finalNames[name] = {}
# make sure we pick up any other controlling defaults
finalNames[name].update(defaultValues)
# but override the values that would have been determined by _parse_varnames
finalNames[name]['variable_name'] = name
finalNames[name]['epsilon'] = epsilon
(no author)
committed
# load the missing value if it was not provided
missing, missing_b = _get_missing_values_if_needed((fileAObject, fileBObject), name,
missing_value_A=missing, missing_value_B=missing)
finalNames[name]['missing_value'] = missing
finalNames[name]['missing_value_alt_in_b'] = missing_b
(no author)
committed
# otherwise just do the ones the user asked for
else :
(no author)
committed
# check each of the names the user asked for to see if it is either in the list of common names
# or, if the user asked for an alternate name mapping in file B, if the two mapped names are in
# files A and B respectively
(no author)
committed
for dispName in requestedNames :
(no author)
committed
(no author)
committed
# hang on to info on the current variable
currNameInfo = requestedNames[dispName]
(no author)
committed
(no author)
committed
# get the variable name
if 'variable_name' in currNameInfo :
name = currNameInfo['variable_name']
name_b = name
(no author)
committed
(no author)
committed
if ('alternate_name_in_B' in currNameInfo) :
name_b = currNameInfo['alternate_name_in_B']
(no author)
committed
if (name in fileCommonNames) or \
(no author)
committed
(currNameInfo.has_key('alternate_name_in_B') and
(name in nameComparison['uniqueToAVars']) and
(name_b in nameComparison['uniqueToBVars'])) :
finalNames[dispName] = defaultValues.copy()
finalNames[dispName]['display_name'] = dispName
finalNames[dispName].update(currNameInfo)
# load the missing value if it was not provided
missing = finalNames[dispName]['missing_value']
if ('missing_value_alt_in_b' in finalNames[dispName]) :
missing_b = finalNames[dispName]['missing_value_alt_in_b']
else :
missing_b = missing
finalNames[dispName]['missing_value'], finalNames[dispName]['missing_value_alt_in_b'] = \
_get_missing_values_if_needed((fileAObject, fileBObject), name, name_b,
missing, missing_b)
(no author)
committed
else :
LOG.warn('No technical variable name was given for the entry described as "' + dispName + '". ' +
'Skipping this variable.')
(no author)
committed
else:
# format command line input similarly to the stuff from the config file
print (requestedNames)
(no author)
committed
finalFromCommandLine = _parse_varnames(fileCommonNames, requestedNames,
defaultValues['epsilon'], defaultValues['missing_value'])
for name, epsilon, missing in finalFromCommandLine :
## we'll use the variable's name as the display name for the time being
finalNames[name] = {}
# make sure we pick up any other controlling defaults
finalNames[name].update(defaultValues)
# but override the values that would have been determined by _parse_varnames
finalNames[name]['variable_name'] = name
finalNames[name]['epsilon'] = epsilon
(no author)
committed
# load the missing value if it was not provided
missing, missing_b = _get_missing_values_if_needed((fileAObject, fileBObject), name,
missing_value_A=missing, missing_value_B=missing)
(no author)
committed
finalNames[name]['missing_value'] = missing
finalNames[name]['missing_value_alt_in_b'] = missing_b
(no author)
committed
LOG.debug("Final selected set of variables to analyze:")
LOG.debug(str(finalNames))
(no author)
committed
return finalNames, nameComparison
def _get_missing_values_if_needed((fileA, fileB),
var_name, alt_var_name=None,
missing_value_A=None, missing_value_B=None) :
"""
get the missing values for two files based on the variable name(s)
if the alternate variable name is passed it will be used for the
second file in place of the primary variable name
"""
# if we don't have an alternate variable name, use the existing one
if alt_var_name is None :
alt_var_name = var_name
if missing_value_A is None :
missing_value_A = fileA.missing_value(var_name)
if missing_value_B is None :
missing_value_B = fileB.missing_value(alt_var_name)
return missing_value_A, missing_value_B
(no author)
committed
def _load_config_or_options(optionsSet, originalArgs) :
"""
load information on how the user wants to run the command either from the command line options or
from a configuration file
"""
# basic defaults for stuff we will need to return
runInfo = {}
runInfo.update(glance_setting_defaults) # get the default settings
runInfo.update(glance_lon_lat_defaults) # get the default lon/lat info
(no author)
committed
runInfo['version'] = _get_glance_version_string()
(no author)
committed
# by default, we don't have any particular variables to analyze
desiredVariables = {}
# use the built in default values, to start with
defaultsToUse = glance_analysis_defaults.copy()
requestedNames = None
# set up the paths, they can only come from the command line
paths = {}
paths['a'], paths['b'] = originalArgs[:2] # todo, let caller control # of paths expected?
paths['out'] = optionsSet.outputpath
# check to see if the user wants to use a config file and if the path exists
requestedConfigFile = optionsSet.configFile
usedConfigFile = False
if (not (requestedConfigFile is None)) and os.path.exists(requestedConfigFile):
LOG.info ("Using Config File Settings")
# this will handle relative paths
(no author)
committed
requestedConfigFile = os.path.abspath(os.path.expanduser(requestedConfigFile))
# split out the file base name and the file path
(filePath, fileName) = os.path.split(requestedConfigFile)
splitFileName = fileName.split('.')
fileBaseName = fileName[:-3] # remove the '.py' from the end
(no author)
committed
# hang onto info about the config file for later
runInfo['config_file_name'] = fileName
runInfo['config_file_path'] = requestedConfigFile
(no author)
committed
# load the file
print('loading config file: ' + str(requestedConfigFile))
glanceRunConfig = imp.load_module(fileBaseName, file(requestedConfigFile, 'U'),
filePath, ('.py' , 'U', 1))
# this is an exception, since it is not advertised to the user we don't expect it to be in the file
# (at least not at the moment, it could be added later and if they did happen to put it in the
# config file, it would override this line)
runInfo['shouldIncludeReport'] = not optionsSet.imagesOnly
(no author)
committed
# get everything from the config file
(no author)
committed
runInfo.update(glanceRunConfig.settings)
(no author)
committed
runInfo.update(glanceRunConfig.lat_lon_info) # get info on the lat/lon variables
(no author)
committed
# get any requested names
requestedNames = glanceRunConfig.setOfVariables.copy()
# user selected defaults, if they omit any we'll still be using the program defaults
defaultsToUse.update(glanceRunConfig.defaultValues)
usedConfigFile = True
# if we didn't get the info from the config file for some reason
# (the user didn't want to, we couldn't, etc...) get it from the command line options
if not usedConfigFile:
LOG.info ('Using Command Line Settings')
# so get everything from the options directly
runInfo['shouldIncludeReport'] = not optionsSet.imagesOnly
runInfo['shouldIncludeImages'] = not optionsSet.htmlOnly
(no author)
committed
runInfo['doFork'] = optionsSet.doFork
(no author)
committed
runInfo['latitude'] = optionsSet.latitudeVar or runInfo['latitude']
runInfo['longitude'] = optionsSet.longitudeVar or runInfo['longitude']
runInfo['lon_lat_epsilon'] = optionsSet.lonlatepsilon
(no author)
committed
# get any requested names from the command line
requestedNames = originalArgs[2:] or ['.*']
# user selected defaults
defaultsToUse['epsilon'] = optionsSet.epsilon
defaultsToUse['missing_value'] = optionsSet.missing
# note: there is no way to set the tolerances from the command line
(no author)
committed
(no author)
committed
# if we can't use a longitude / latitude
# we also don't want to make images!
# TODO, make this actually control the comparison logic and report
if ("shouldIgnoreLonLat" in runInfo) and (runInfo["shouldIgnoreLonLat"]) :
runInfo["shouldIncludeImages"] = False
(no author)
committed
return paths, runInfo, defaultsToUse, requestedNames, usedConfigFile
def _get_and_analyze_lon_lat (fileObject,
latitudeVariableName, longitudeVariableName,
latitudeDataFilterFn=None, longitudeDataFilterFn=None) :
"""
get the longitude and latitude data from the given file, assuming they are in the given variable names
and analyze them to identify spacially invalid data (ie. data that would fall off the earth)
"""
# get the data from the file
longitudeData = array(fileObject[longitudeVariableName], dtype=float)
latitudeData = array(fileObject[latitudeVariableName], dtype=float)
# if we have filters, use them
if not (latitudeDataFilterFn is None) :
latitudeData = latitudeDataFilterFn(latitudeData)
LOG.debug ('latitude size after application of filter: ' + str(latitudeData.shape))
if not (longitudeDataFilterFn is None) :
longitudeData = longitudeDataFilterFn(longitudeData)
LOG.debug ('longitude size after application of filter: ' + str(longitudeData.shape))
# build a mask of our spacially invalid data
invalidLatitude = (latitudeData < -90) | (latitudeData > 90)
invalidLongitude = (longitudeData < -180) | (longitudeData > 360)
spaciallyInvalidMask = invalidLatitude | invalidLongitude
# analyze our spacially invalid data
percentageOfSpaciallyInvalidPts, numberOfSpaciallyInvalidPts = _get_percentage_from_mask(spaciallyInvalidMask)
(no author)
committed
return longitudeData, latitudeData, spaciallyInvalidMask, {'totNumInvPts': numberOfSpaciallyInvalidPts,
'perInvPts': percentageOfSpaciallyInvalidPts}
def _get_percentage_from_mask(dataMask) :
"""
given a mask that marks the elements we want the percentage of as True (and is the size of our original data),
figure out what percentage of the whole they are
"""
numMarkedDataPts = sum(dataMask)
totalDataPts = dataMask.size
# avoid dividing by 0
if totalDataPts is 0 :
return 0.0, 0
percentage = 100.0 * float(numMarkedDataPts) / float(totalDataPts)
return percentage, numMarkedDataPts
def _check_lon_lat_equality(longitudeA, latitudeA,
longitudeB, latitudeB,
ignoreMaskA, ignoreMaskB,
llepsilon, doMakeImages, outputPath) :
(no author)
committed
"""
check to make sure the longitude and latitude are equal everywhere that's not in the ignore masks
if they are not and doMakeImages was passed as True, generate appropriate figures to show where
return the number of points where they are not equal (0 would mean they're the same)
"""
# first of all, if the latitude and longitude are not the same shape, then things can't ever be "equal"
if (longitudeA.shape != longitudeB.shape) | (latitudeA.shape != latitudeB.shape) :
return None
lon_lat_not_equal_points_count = 0
lon_lat_not_equal_points_percent = 0.0
# get information about how the latitude and longitude differ
longitudeDiff, finiteLongitudeMask, _, _, lon_not_equal_mask, _, _, _ = delta.diff(longitudeA, longitudeB,
llepsilon,
(None, None),
(ignoreMaskA, ignoreMaskB))
latitudeDiff, finiteLatitudeMask, _, _, lat_not_equal_mask, _, _, _ = delta.diff(latitudeA, latitudeB,
llepsilon,
(None, None),
(ignoreMaskA, ignoreMaskB))
lon_lat_not_equal_mask = lon_not_equal_mask | lat_not_equal_mask
lon_lat_not_equal_points_count = sum(lon_lat_not_equal_mask)
(no author)
committed
lon_lat_not_equal_points_percent = (float(lon_lat_not_equal_points_count) / float(lon_lat_not_equal_mask.size)) * 100.0
# if we have unequal points, create user legible info about the problem
if (lon_lat_not_equal_points_count > 0) :
(no author)
committed
LOG.warn("Possible mismatch in values stored in file a and file b longitude and latitude values."
+ " Depending on the degree of mismatch, some data value comparisons may be "
+ "distorted or spacially nonsensical.")
# if we are making images, make two showing the invalid lons/lats
if (doMakeImages) :
plot.plot_and_save_spacial_trouble(longitudeA, latitudeA,
lon_lat_not_equal_mask,
ignoreMaskA,
"A", "Lon./Lat. Points Mismatched between A and B\n" +
"(Shown in A)",
"LonLatMismatch",
outputPath, True)
plot.plot_and_save_spacial_trouble(longitudeB, latitudeB,
lon_lat_not_equal_mask,
ignoreMaskB,
"B", "Lon./Lat. Points Mismatched between A and B\n" +
"(Shown in B)",
"LonLatMismatch",
outputPath, True)
# setup our return data
returnInfo = {}
returnInfo['lon_lat_not_equal_points_count'] = lon_lat_not_equal_points_count
returnInfo['lon_lat_not_equal_points_percent'] = lon_lat_not_equal_points_percent
return returnInfo
(no author)
committed
(no author)
committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
def _compare_spatial_invalidity(invalid_in_a_mask, invalid_in_b_mask, spatial_info,
longitude_a, longitude_b, latitude_a, latitude_b,
do_include_images, output_path) :
"""
Given information about where the two files are spatially invalid, figure
out what invalidity they share and save information or plots for later use
also build a shared longitude/latitude based on A but also including valid
points in B
"""
# for convenience,
# make a combined mask
invalid_in_common_mask = invalid_in_a_mask | invalid_in_b_mask
# make a "common" latitude based on A
longitude_common = longitude_a
latitude_common = latitude_a
# compare our spacialy invalid info
spatial_info['perInvPtsInBoth'] = spatial_info['file A']['perInvPts']
# a default that will hold if the two files have the same spatially invalid pts
if not all(invalid_in_a_mask.ravel() == invalid_in_b_mask.ravel()) :
LOG.info("Mismatch in number of spatially invalid points. " +
"Files may not have corresponding data where expected.")
# figure out which points are only valid in one of the two files
valid_only_in_mask_a = (~invalid_in_a_mask) & invalid_in_b_mask
spatial_info['file A']['numInvPts'] = sum(valid_only_in_mask_a.ravel())
valid_only_in_mask_b = (~invalid_in_b_mask) & invalid_in_a_mask
spatial_info['file B']['numInvPts'] = sum(valid_only_in_mask_b.ravel())
# so how many do they have together?
spatial_info['perInvPtsInBoth'] = _get_percentage_from_mask(invalid_in_common_mask)[0]
# make a "clean" version of the lon/lat
longitude_common[valid_only_in_mask_a] = longitude_a[valid_only_in_mask_a]
longitude_common[valid_only_in_mask_b] = longitude_b[valid_only_in_mask_b]
latitude_common [valid_only_in_mask_a] = latitude_a [valid_only_in_mask_a]
latitude_common [valid_only_in_mask_b] = latitude_b [valid_only_in_mask_b]
# plot the points that are only valid one file and not the other
if (spatial_info['file A']['numInvPts'] > 0) and (do_include_images) :
plot.plot_and_save_spacial_trouble(longitude_a, latitude_a,
valid_only_in_mask_a,
invalid_in_a_mask,
"A", "Points only valid in\nFile A\'s longitude & latitude",
(no author)
committed
"SpatialMismatch",
output_path, True)
if (spatial_info['file B']['numInvPts'] > 0) and (do_include_images) :
plot.plot_and_save_spacial_trouble(longitude_b, latitude_b,
valid_only_in_mask_b,
invalid_in_b_mask,
"B", "Points only valid in\nFile B\'s longitude & latitude",
(no author)
committed
"SpatialMismatch",
output_path, True)
return invalid_in_common_mask, spatial_info, longitude_common, latitude_common
def _open_and_process_files (args, numFilesExpected):
"""
open files listed in the args and get information about the variables in them
"""
# get all the file names
fileNames = args[:numFilesExpected]
# open all the files & get their variable names
files = {}
commonNames = None
for fileName in fileNames:
LOG.info("opening %s" % fileName)
files[fileName] = {}
tempFileObject = (io.open(fileName))
files[fileName]['fileObject'] = tempFileObject
tempNames = set(tempFileObject())
files[fileName]['varNames'] = tempNames
if commonNames is None :
commonNames = tempNames
else :
commonNames = commonNames.intersection(tempNames)
files['commonVarNames'] = commonNames
return files
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
def _check_pass_or_fail(varRunInfo, variableStats, defaultValues) :
"""
Check whether the variable passed analysis, failed analysis, or
did not need to be quantitatively tested
"""
didPass = None
# get our tolerance values
# get the tolerance for failures in comparison compared to epsilon
epsilonTolerance = None
if ('epsilon_failure_tolerance' in varRunInfo) :
epsilonTolerance = varRunInfo['epsilon_failure_tolerance']
else :
epsilonTolerance = defaultValues['epsilon_failure_tolerance']
# get the tolerance for failures in amount of nonfinite data
# found in spatially valid areas
nonfiniteTolerance = None
if ('nonfinite_data_tolerance' in varRunInfo) :
nonfiniteTolerance = varRunInfo['nonfinite_data_tolerance']
else :
nonfiniteTolerance = defaultValues['nonfinite_data_tolerance']
# test to see if we passed or failed
# check for our epsilon tolerance
if not (epsilonTolerance is None) :
failed_fraction = variableStats['Numerical Comparison Statistics']['diff_outside_epsilon_fraction']
didPass = failed_fraction <= epsilonTolerance
(no author)
committed
# check to see if it failed on nonfinite data
if not (nonfiniteTolerance is None) :
(no author)
committed
non_finite_diff_fraction = variableStats['Finite Data Statistics']['finite_in_only_one_fraction']
(no author)
committed
passedNonFinite = non_finite_diff_fraction <= nonfiniteTolerance
(no author)
committed
# combine the two test results
if (didPass is None) :
didPass = passedNonFinite
else :
didPass = didPass and passedNonFinite
return didPass
(no author)
committed
def _get_glance_version_string() :
version_num = pkg_resources.require('glance')[0].version
return "glance, version " + str(version_num)
def main():
import optparse
usage = """
%prog [options]
run "%prog help" to list commands
examples:
python -m glance.compare info A.hdf
python -m glance.compare stats A.hdf B.hdf '.*_prof_retr_.*:1e-4' 'nwp_._index:0'
(no author)
committed
python -m glance.compare plotDiffs A.hdf B.hdf
python -m glance compare reportGen A.hdf B.hdf
python -m glance
"""
parser = optparse.OptionParser(usage)
parser.add_option('-t', '--test', dest="self_test",
action="store_true", default=False, help="run internal unit tests")
parser.add_option('-q', '--quiet', dest="quiet",
action="store_true", default=False, help="only error output")
parser.add_option('-v', '--verbose', dest="verbose",
action="store_true", default=False, help="enable more informational output")
parser.add_option('-w', '--debug', dest="debug",
action="store_true", default=False, help="enable debug output")
parser.add_option('-e', '--epsilon', dest="epsilon", type='float', default=0.0,
help="set default epsilon value for comparison threshold")
parser.add_option('-m', '--missing', dest="missing", type='float', default=None,
help="set default missing-value")
(no author)
committed
#report generation related options
parser.add_option('-p', '--outputpath', dest="outputpath", type='string', default='./',
help="set path to output directory")
parser.add_option('-o', '--longitude', dest="longitudeVar", type='string',
help="set name of longitude variable")
parser.add_option('-a', '--latitude', dest="latitudeVar", type='string',
help="set name of latitude variable")
(no author)
committed
parser.add_option('-i', '--imagesonly', dest="imagesOnly",
action="store_true", default=False,
help="generate only image files (no html report)")
parser.add_option('-r', '--reportonly', dest="htmlOnly",
action="store_true", default=False,
help="generate only html report files (no images)")
(no author)
committed
parser.add_option('-c', '--configfile', dest="configFile", type='string', default=None,
help="set optional configuration file")
parser.add_option('-l', '--llepsilon', dest='lonlatepsilon', type='float', default=0.0,
help="set default epsilon for longitude and latitude comparsion")
(no author)
committed
parser.add_option('-n', '--version', dest='version',
action="store_true", default=False, help="view the glance version")
(no author)
committed
parser.add_option('-f', '--fork', dest='doFork',
action="store_true", default=False, help="start multiple processes to create images in parallel")
options, args = parser.parse_args()
if options.self_test:
import doctest
doctest.testmod()
sys.exit(2)
lvl = logging.WARNING
if options.debug: lvl = logging.DEBUG
elif options.verbose: lvl = logging.INFO
elif options.quiet: lvl = logging.ERROR
logging.basicConfig(level = lvl)
(no author)
committed
# display the version
if options.version :
print (_get_glance_version_string() + '\n')
commands = {}
prior = None
prior = dict(locals())
def info(*args):
"""list information about a list of files
List available variables for comparison.
"""
for fn in args:
lal = list(io.open(fn)())
lal.sort()
print fn + ': ' + ('\n ' + ' '*len(fn)).join(lal)
def sdr_cris(*args):
"""compare sdr_cris output
parameters are variable name followed by detector number
sdr_cris desired.h5 actual.h5 ESRealLW 0
""" # TODO ******* standardize with method?
afn,bfn = args[:2]
LOG.info("opening %s" % afn)
a = io.open(afn)
LOG.info("opening %s" % bfn)
b = io.open(bfn)
# shape is [scanline, field, detector, wnum]
vname = '/All_Data/CrIS-SDR_All/' + args[2]
det_idx = int(args[3])
def get(f):
spc = f[vname][:,:,det_idx,:]
nsl,nfor,nwn = spc.shape
return spc.reshape( (nsl*nfor,nwn) )
aspc = get(a)
bspc = get(b)
plot.compare_spectra(bspc,aspc)
plot.show()
def noisecheck(*args):
"""gives statistics for dataset comparisons against truth with and without noise
usage: noisecheck truth-file noise-file actual-file variable1{:epsilon{:missing}} {variable2...}
glance noisecheck /Volumes/snaapy/data/justins/abi_graffir/coreg/pure/l2_data/geocatL2.GOES-R.2005155.220000.hdf.gz /Volumes/snaapy/data/justins/abi_graffir/noise/noise1x/l2_data/geocatL2.GOES-R.2005155.220000.hdf
""" # TODO ******* standardize with method?
afn,noizfn,bfn = args[:3]
LOG.info("opening truth file %s" % afn)
a = io.open(afn)
LOG.info("opening actual file %s" % noizfn)
noiz = io.open(noizfn)
LOG.info("opening noise file %s" % bfn)
b = io.open(bfn)
anames = set(a())
bnames = set(b())
cnames = anames.intersection(bnames) # common names
pats = args[3:] or ['.*']
names = _parse_varnames( cnames, pats, options.epsilon, options.missing )
for name,epsilon,missing in names:
aData = a[name]
bData = b[name]
nData = noiz[name]
if missing is None:
amiss = a.missing_value(name)
bmiss = b.missing_value(name)
else:
amiss,bmiss = missing,missing
x = aData
y = bData
z = nData
def scat(x,xn,y):
from pylab import plot,show,scatter
scatter(x,y)
show()
nfo = delta.rms_corr_withnoise(x,y,z,epsilon,(amiss,bmiss),plot=scat)
print '-'*32
print name
for kv in sorted(nfo.items()):
print ' %s: %s' % kv
def stats(*args):
"""create statistics summary of variables
Summarize difference statistics between listed variables.
If no variable names are given, summarize all common variables.
Variable names can be of the form varname:epsilon:missing to use non-default epsilon or missing value.
Variable names can be regular expressions, e.g. 'image.*' or '.*prof_retr.*::-999'
Either epsilon or missing can be empty to stay with default.
If _FillValue is an attribute of a variable, that will be used to find missing values where no value is given.
Run with -v to get more detailed information on statistics.
Examples:
python -m glance.compare stats hdffile1 hdffile2
python -m glance.compare stats --epsilon=0.00001 A.hdf B.hdf baseline_cmask_seviri_cloud_mask:0.002:
python -m glance.compare -w stats --epsilon=0.00001 A.hdf A.hdf imager_prof_retr_abi_total_precipitable_water_low::-999
"""
afn,bfn = args[:2]
filesInfo = _open_and_process_files(args, 2)
aFile = filesInfo[afn]['fileObject']
bFile = filesInfo[bfn]['fileObject']
names = _parse_varnames( filesInfo['commonVarNames'], pats, options.epsilon, options.missing )
LOG.debug(str(names))
doc_each = (options.verbose or options.debug) and len(names)==1
doc_atend = (options.verbose or options.debug) and len(names)!=1
for name,epsilon,missing in names:
aData = aFile[name]
bData = bFile[name]
amiss = aFile.missing_value(name)
bmiss = bFile.missing_value(name)
else:
amiss,bmiss = missing,missing
LOG.debug('comparing %s with epsilon %s and missing %s,%s' % (name,epsilon,amiss,bmiss))
aval = aData
bval = bData
(no author)
committed
print
lal = list(delta.summarize(aval,bval,epsilon,(amiss,bmiss)).items())
(no author)
committed
for dictionary_title, dict_data in lal:
print '%s' % dictionary_title
dict_data
for each_stat in sorted(list(dict_data)):
print ' %s: %s' % (each_stat, dict_data[each_stat])
if doc_each: print(' ' + delta.STATISTICS_DOC[each_stat])
print
if doc_atend:
print('\n\n' + delta.STATISTICS_DOC_STR)
(no author)
committed
def plotDiffs(*args) :
(no author)
committed
"""generate a set of images comparing two files
This option creates a set of graphical comparisons of variables in the two given hdf files.
The images detailing the differences between variables in the two hdf files will be
generated and saved to disk.
Variables to be compared may be specified after the names of the two input files. If no variables
are specified, all variables that match the shape of the longitude and latitude will be compared.
Specified variables that do not exist, do not match the correct data shape, or are the longitude/latitude
variables will be ignored.
(no author)
committed
The user may also use the notation variable_name:epsilon:missing_value to specify the acceptible epsilon
for comparison and the missing_value which indicates missing data. If one or both of these values is absent
(in the case of variable_name:epsilon: variable_name::missing_value or just variable_name) the default value
of 0.0 will be used for epsilon and no missing values will be analyzed.
The created images will be stored in the provided path, or if no path is provided, they will be stored in
the current directory.
The longitude and latitude variables may be specified with --longitude and --latitude
If no longitude or latitude are specified the pixel_latitude and pixel_longitude variables will be used.
Examples:
(no author)
committed
python -m glance.compare plotDiffs A.hdf B.hdf variable_name_1:epsilon1: variable_name_2 variable_name_3:epsilon3:missing3 variable_name_4::missing4
python -m glance.compare --outputpath=/path/where/output/will/be/placed/ plotDiffs A.hdf B.hdf
python -m glance.compare plotDiffs --longitude=lon_variable_name --latitude=lat_variable_name A.hdf B.hdf variable_name
"""
(no author)
committed
# set the options so that a report will not be generated
options.imagesOnly = True
# make the images
reportGen(*args)
return
(no author)
committed
def reportGen(*args) :
"""generate a report comparing two files
This option creates a report comparing variables in the two given hdf files.
An html report and images detailing the differences between variables in the two hdf files will be
generated and saved to disk. The images will be embedded in the report or visible as separate .png files.
Variables to be compared may be specified after the names of the two input files. If no variables
are specified, all variables that match the shape of the longitude and latitude will be compared.
Specified variables that do not exist, do not match the correct data shape, or are the longitude/latitude
variables will be ignored.
The user may also use the notation variable_name:epsilon:missing_value to specify the acceptible epsilon
for comparison and the missing_value which indicates missing data. If one or both of these values is absent
(in the case of variable_name:epsilon: variable_name::missing_value or just variable_name) the default value
of 0.0 will be used for epsilon and no missing values will be analyzed.
The html report page(s) and any created images will be stored in the provided path, or if no path is provided,
they will be stored in the current directory.
If for some reason you would prefer to generate the report without images, use the --reportonly option. This
option will generate the html report but omit the images. This may be significantly faster, depending on
your system, but the differences between the files may be quite a bit more difficult to interpret.
The longitude and latitude variables may be specified with --longitude and --latitude
If no longitude or latitude are specified the pixel_latitude and pixel_longitude variables will be used.
(no author)
committed
Examples:
python -m glance.compare reportGen A.hdf B.hdf variable_name_1:epsilon1: variable_name_2 variable_name_3:epsilon3:missing3 variable_name_4::missing4
python -m glance.compare --outputpath=/path/where/output/will/be/placed/ reportGen A.hdf B.hdf
python -m glance.compare reportGen --longitude=lon_variable_name --latitude=lat_variable_name A.hdf B.hdf variable_name
python -m glance.compare reportGen --imagesonly A.hdf B.hdf
"""
(no author)
committed
# load the user settings from either the command line or a user defined config file
pathsTemp, runInfo, defaultValues, requestedNames, usedConfigFile = _load_config_or_options(options, args)
# note some of this information for debugging purposes
(no author)
committed
LOG.debug('paths: ' + str(pathsTemp))
LOG.debug('defaults: ' + str(defaultValues))
LOG.debug('run information: ' + str(runInfo))
(no author)
committed
# if we wouldn't generate anything, just stop now
if (not runInfo['shouldIncludeImages']) and (not runInfo['shouldIncludeReport']) :
(no author)
committed
LOG.warn("User selection of no image generation and no report generation will result in no " +
(no author)
committed
"content being generated. Aborting generation function.")
(no author)
committed
return
(no author)
committed
# get info on who's doing the run and where
runInfo['machine'] = os.uname()[1] # the name of the machine running the report
runInfo['user'] = os.getenv("LOGNAME") #os.getlogin() # the name of the user running the report
(no author)
committed
(no author)
committed
# deal with the input and output files
(no author)
committed
outputPath = pathsTemp['out']
if not (os.path.isdir(outputPath)) :
LOG.info("Specified output directory (" + outputPath + ") does not exist.")
LOG.info("Creating output directory.")
os.makedirs(outputPath)
(no author)
committed
# open the files
files = {}
LOG.info("Processing File A:")
(no author)
committed
aFile, files['file A'] = _setup_file(pathsTemp['a'], "\t")
if aFile is None:
LOG.warn("Unable to continue with comparison because file a (" + pathsTemp['a'] + ") could not be opened.")
sys.exit(1)
LOG.info("Processing File B:")
(no author)
committed
bFile, files['file B'] = _setup_file(pathsTemp['b'], "\t")
if bFile is None:
LOG.warn("Unable to continue with comparison because file b (" + pathsTemp['b'] + ") could not be opened.")
sys.exit(1)
(no author)
committed
# get information about the names the user requested
(no author)
committed
finalNames, nameStats = _resolve_names(aFile, bFile,
defaultValues,
requestedNames, usedConfigFile)
(no author)
committed
# get and analyze our longitude and latitude data
(no author)
committed
spatialInfo = {}
b_longitude = runInfo['longitude']
b_latitude = runInfo['latitude']
if ('longitude_alt_name_in_b' in runInfo) :
b_longitude = runInfo['longitude_alt_name_in_b']
if ( 'latitude_alt_name_in_b' in runInfo):
b_latitude = runInfo['latitude_alt_name_in_b']
longitudeA, latitudeA, spaciallyInvalidMaskA, spatialInfo['file A'] = \
_get_and_analyze_lon_lat (aFile, runInfo['latitude'], runInfo['longitude'],
runInfo['data_filter_function_lat_in_a'], runInfo['data_filter_function_lon_in_a'])
(no author)
committed
longitudeB, latitudeB, spaciallyInvalidMaskB, spatialInfo['file B'] = \
_get_and_analyze_lon_lat (bFile, b_latitude, b_longitude,
runInfo['data_filter_function_lat_in_b'], runInfo['data_filter_function_lon_in_b'])
(no author)
committed
# test the "valid" values in our lon/lat
moreSpatialInfo = _check_lon_lat_equality(longitudeA, latitudeA, longitudeB, latitudeB,
spaciallyInvalidMaskA, spaciallyInvalidMaskB,
runInfo['lon_lat_epsilon'], runInfo['shouldIncludeImages'],
outputPath)
(no author)
committed
# if we got the worst type of error result from the comparison we need to stop now, because the data is too
# dissimilar to be used
if moreSpatialInfo is None :
(no author)
committed
LOG.warn("Unable to reconcile sizes of longitude and latitude for variables "
+ str(runInfo['longitude']) + str(longitudeA.shape) + "/"
+ str(runInfo['latitude']) + str(latitudeA.shape) + " in file A and variables "
+ str(b_longitude) + str(longitudeB.shape) + "/"
+ str(b_latitude) + str(latitudeB.shape) + " in file B. Aborting attempt to compare files.")
(no author)
committed
sys.exit(1) # things have gone wrong
# update our existing spatial information
spatialInfo.update(moreSpatialInfo)
""" TODO, this feature is not helpful, but generally hinders your ability to get information you need
# if we have some points outside epsilon, we still want to make a report to show the user this problem, but
# we can't trust most of our other comparison images
if spatialInfo['lon_lat_not_equal_points_count'] > 0 :
runInfo['short_circuit_diffs'] = True # I could simply run the above test every time, but this is simpler and clearer
"""
(no author)
committed
(no author)
committed
# compare our spatially invalid info to see if the two files have invalid longitudes and latitudes in the same places
spaciallyInvalidMask, spatialInfo, longitudeCommon, latitudeCommon = \
_compare_spatial_invalidity(spaciallyInvalidMaskA, spaciallyInvalidMaskB, spatialInfo,
longitudeA, longitudeB, latitudeA, latitudeB,
runInfo['shouldIncludeImages'], outputPath)
(no author)
committed
# set some things up to hold info for our reports
# this will hold our variable report information in the form
# [var_name] = {"var_stats": dictionary of statistics info, "run_info": information specific to that variable run,
# "data": {"A": data from file A, "B": data from file B}}
variableAnalysisInfo = {}
# go through each of the possible variables in our files
(no author)
committed
# and make a report section with images for whichever ones we can
(no author)
committed
for varKey in finalNames:
(no author)
committed
# pull out the information for this variable analysis run
(no author)
committed
varRunInfo = finalNames[varKey].copy()
# make some local copies of our name info for display and labeling
(no author)
committed
technicalName = varRunInfo['variable_name']
displayName = technicalName
if 'display_name' in varRunInfo :
(no author)
committed
displayName = varRunInfo['display_name']
(no author)
committed
explanationName = technicalName
(no author)
committed
# check to see if there is a directory to put information about this variable in,
# if not then create it
variableDir = outputPath + "/" + displayName
varRunInfo['variable_dir'] = variableDir
(no author)
committed
varRunInfo['variable_report_path_escaped'] = quote("./" + displayName + "/" + os.path.split(technicalName)[1] + '.html')
LOG.debug ("Directory selected for variable information: " + varRunInfo['variable_report_path_escaped'])
if not (os.path.isdir(variableDir)) :
LOG.debug("Variable directory (" + variableDir + ") does not exist.")
LOG.debug("Creating variable directory.")
os.makedirs(variableDir)
(no author)
committed
# if B has an alternate variable name, figure that out
(no author)
committed
b_variable = technicalName
if 'alternate_name_in_B' in varRunInfo :
(no author)
committed
b_variable = varRunInfo['alternate_name_in_B']
(no author)
committed
explanationName = explanationName + " / " + b_variable
explanationName = displayName + ' (' + explanationName + ')'
print('analyzing: ' + explanationName + ')')
# get the data for the variable
(no author)
committed
aData = aFile[technicalName]
bData = bFile[b_variable]
# apply any data filter functions we may have
if ('data_filter_function_a' in varRunInfo) :
aData = varRunInfo['data_filter_function_a'](aData)
LOG.debug ("filter function was applied to file A data for variable: " + explanationName)
if ('data_filter_function_b' in varRunInfo) :
bData = varRunInfo['data_filter_function_b'](bData)
LOG.debug ("filter function was applied to file B data for variable: " + explanationName)
# check if this data can be displayed but
# don't compare lon/lat sizes if we won't be plotting
if ((aData.shape == bData.shape)
and
((('shouldIncludeImages' in varRunInfo) and (not varRunInfo['shouldIncludeImages']))
or
((aData.shape == longitudeCommon.shape) and (bData.shape == longitudeCommon.shape)) )) :
(no author)
committed
# build a dictionary of information on the variable
(no author)
committed
variableAnalysisInfo[varKey] = {}
variableAnalysisInfo[varKey]['data'] = {'A': aData,
'B': bData}
mask_a_to_use = spaciallyInvalidMaskA
mask_b_to_use = spaciallyInvalidMaskB
if (('shouldIncludeImages' in varRunInfo) and (not varRunInfo['shouldIncludeImages'])) :
mask_a_to_use = None
mask_b_to_use = None
(no author)
committed
variableAnalysisInfo[varKey]['var_stats'] = delta.summarize(aData, bData,
varRunInfo['epsilon'],
(varRunInfo['missing_value'],
varRunInfo['missing_value_alt_in_b']),
mask_a_to_use, mask_b_to_use)
# add a little additional info to our variable run info before we squirrel it away
varRunInfo['time'] = datetime.datetime.ctime(datetime.datetime.now())
(no author)
committed
passedFraction = (1.0 - variableAnalysisInfo[varKey]['var_stats']
['Numerical Comparison Statistics']['diff_outside_epsilon_fraction'])
didPass = _check_pass_or_fail(varRunInfo,
variableAnalysisInfo[varKey]['var_stats'],
defaultValues)
varRunInfo['did_pass'] = didPass
# based on the settings the user gave and whether the variable passsed or failed,
# should we include images for this variable?
currentIncludeImages = runInfo['shouldIncludeImages']
if ('shouldIncludeImages' in varRunInfo) :
currentIncludeImages = varRunInfo['shouldIncludeImages']
if ('only_plot_on_fail' in varRunInfo) :
varRunInfo['shouldIncludeImages'] = currentIncludeImages and (not (varRunInfo['only_plot_on_fail'] and didPass))
# set the rest of our info