Newer
Older
(no author)
committed
#!/usr/bin/env python
# encoding: utf-8
"""
Plotting routines for different types of figures using matplotlib
Created by evas Dec 2009.
Copyright (c) 2009 University of Wisconsin SSEC. All rights reserved.
"""
# these first two lines must stay before the pylab import
import matplotlib
matplotlib.use('Agg') # use the Anti-Grain Geometry rendering engine
from pylab import *
(no author)
committed
import matplotlib.cm as cm
(no author)
committed
import matplotlib.pyplot as plt
import matplotlib.colors as colors
(no author)
committed
from matplotlib.ticker import FormatStrFormatter
(no author)
committed
(no author)
committed
import numpy as np
(no author)
committed
from numpy import ma
(no author)
committed
import glance.graphics as maps
import glance.delta as delta
import glance.report as report
import glance.stats as statistics
(no author)
committed
LOG = logging.getLogger(__name__)
# TODO this value is being used to work around a problem with the contourf
# and how it handles range boundaries. Find a better solution if at all possible.
offsetToRange = 0.0000000000000000001
# make an all green color map
greenColorMapData = {
'red' : ((0.0, 0.00, 0.00),
(1.0, 0.00, 0.00)),
'green' : ((0.0, 1.00, 1.00),
(1.0, 1.00, 1.00)),
'blue' : ((0.0, 0.00, 0.00),
(1.0, 0.00, 0.00))
}
greenColorMap = colors.LinearSegmentedColormap('greenColorMap', greenColorMapData, 256)
(no author)
committed
# todo, the use of the offset here is covering a problem with
(no author)
committed
# contourf hiding data exactly at the end of the range and should
# be removed if a better solution can be found
def _make_range(data_a, valid_a_mask, num_intervals, offset_to_range=0.0, data_b=None, valid_b_mask=None) :
(no author)
committed
"""
get an array with numbers representing the bounds of a set of ranges
that covers all the data present in data_a
(these may be used for plotting the data)
if an offset is passed, the outtermost range will be expanded by that much
if the b data is passed, a total range that encompasses both sets of
data will be used
"""
minVal = delta.min_with_mask(data_a, valid_a_mask)
maxVal = delta.max_with_mask(data_a, valid_a_mask)
(no author)
committed
# if we have a second set of data, include it in the min/max calculations
if (data_b is not None) :
minVal = min(delta.min_with_mask(data_b, valid_b_mask), minVal)
maxVal = max(delta.max_with_mask(data_b, valid_b_mask), maxVal)
(no author)
committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
minVal = minVal - offset_to_range
maxVal = maxVal + offset_to_range
return np.linspace(minVal, maxVal, num_intervals)
def _plot_tag_data_simple(tagData) :
"""
This method will plot tag data listed as true in the
tagData mask on the current figure. It is assumed that
the correlation between the mask and the pixel coordinates
is exact (ie. no translation is needed).
The return will be the number of points plotted or
-1 if no valid tagData was given.
"""
numTroublePoints = -1
# if there are "tag" masks, plot them over the existing map
if not (tagData is None) :
numTroublePoints = sum(tagData)
# if we have trouble points, we need to show them
if numTroublePoints > 0:
# figure out how many bad points there are
totalNumPoints = tagData.size # the number of points
percentBad = (float(numTroublePoints) / float(totalNumPoints)) * 100.0
LOG.debug('\t\tnumber of trouble points: ' + str(numTroublePoints))
LOG.debug('\t\tpercent of trouble points: ' + str(percentBad))
new_kwargs = {}
new_kwargs['cmap'] = greenColorMap
cleanTagData = ma.array(tagData, mask=~tagData)
p = contourf(cleanTagData, **new_kwargs)
# TODO, need to incorporate plot for small numbers of pts
# display the number of trouble points on the report if we were passed a set of tag data
troublePtString = '\n\nShowing ' + str(numTroublePoints) + ' Trouble Points'
# if our plot is more complex, add clarification
if numTroublePoints > 0 :
troublePtString = troublePtString + ' in Green'
plt.xlabel(troublePtString)
return numTroublePoints
def _plot_tag_data_mapped(bMap, tagData, x, y, addExplinationLabel=True) :
"""
This method will plot the tagged data listed as true in the tagData mask
on the current figure using the given basemap.
A message will also be added below the map describing the number of
points plotted, unless the addExplinationLabel variable is passed as False.
The return will be the number of points plotted or
-1 if no valid tagData was given.
numTroublePoints = _plot_tag_data_mapped(bMap, tagData, x, y)
"""
numTroublePoints = -1
# if there are "tag" masks, plot them over the existing map
if (tagData is not None) and (tagData.size > 0) :
# look at how many trouble points we have
numTroublePoints = sum(tagData)
neededHighlighting = False
if numTroublePoints > 0 :
# pick out the cooridinates of the points we want to plot
newX = np.array(x[tagData])
newY = np.array(y[tagData])
# figure out how many bad points there are
totalNumPoints = x.size # the number of points
percentBad = (float(numTroublePoints) / float(totalNumPoints)) * 100.0
LOG.debug('\t\tnumber of trouble points: ' + str(numTroublePoints))
LOG.debug('\t\tpercent of trouble points: ' + str(percentBad))
# if there are very few points, make them easier to notice
# by plotting some colored circles underneath them
if (percentBad < 0.25) or (totalNumPoints < 20) :
neededHighlighting = True
p = bMap.plot(newX, newY, 'o', color='#993399', markersize=5)
elif (percentBad < 1.0) or (totalNumPoints < 200) :
neededHighlighting = True
p = bMap.plot(newX, newY, 'o', color='#993399', markersize=3)
# if there are way too many trouble points, we can't use plot for this
if (numTroublePoints > 1000000) :
new_kwargs = {}
new_kwargs['cmap'] = greenColorMap
p = maps.show_x_y_data(x, y, bMap, data=tagData, **new_kwargs)
else :
# plot our point on top of the existing figure
p = bMap.plot(newX, newY, '.', color='#00FF00', markersize=1)
if addExplinationLabel :
# display the number of trouble points on the report if we were passed a set of tag data
# I'm not thrilled with this solution for getting it below the labels drawn by the basemap
# but I don't think there's a better one at the moment given matplotlib's workings
troublePtString = '\n\nShowing ' + str(numTroublePoints) + ' Trouble Points'
# if our plot is more complex, add clarification
if numTroublePoints > 0 :
troublePtString = troublePtString + ' in Green'
if neededHighlighting :
troublePtString = troublePtString + '\nwith Purple Circles for Visual Clarity'
plt.xlabel(troublePtString)
return numTroublePoints
# build a scatter plot of the x,y points
def create_scatter_plot(dataX, dataY, title, xLabel, yLabel, badMask=None, epsilon=None) :
(no author)
committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""
build a scatter plot of the data
if a bad mask is given the points selected by that mask will be plotted in a different color
if an epsilon is given the lines for +/- epsilon will be drawn on the plot
by default this plot uses blue for data points and red for data marked by the bad mask
"""
return create_complex_scatter_plot ([(dataX, dataY, badMask,
'b', 'r',
'within\nepsilon', 'outside\nepsilon')],
title, xLabel, yLabel, epsilon=epsilon)
def create_complex_scatter_plot(dataList, title, xLabel, yLabel, epsilon=None) :
"""
build a scatter plot with multiple data sets in different colors
the dataList parameter should be in the form:
[(set1), (set2), ... , (setN)]
where a set looks like:
(x data, y data, mask of bad points or None, matlab color code for display, matlab color code for 'bad' points, good label, bad label)
if a mask of bad points is given, it will be applyed to both the x and y data
at least one data set must be given or no image will be created.
"""
(no author)
committed
# make the figure
figure = plt.figure()
axes = figure.add_subplot(111)
(no author)
committed
# if we have no data, stop now
if (dataList is None) or (len(dataList) <= 0) :
return figure;
(no author)
committed
(no author)
committed
# look at the stuff in each of the data sets and plot that set
for dataX, dataY, badMask, goodColor, badColor, goodLabel, badLabel in dataList :
# if we have "bad" data to plot, pull it out
badX = None
badY = None
if (badMask != None) :
badX = dataX[badMask]
badY = dataY[badMask]
dataX = dataX[~badMask]
dataY = dataY[~badMask]
# the scatter plot of the good data
axes.plot(dataX, dataY, ',', color=goodColor, label=goodLabel)
# plot the bad data
numTroublePts = 0
if (badX is not None) and (badY is not None) and (badMask is not None) :
numTroublePts = badX.size
LOG.debug('\t\tplotting ' + str(numTroublePts) + ' trouble points in scatter plot.' )
if numTroublePts > 0 :
axes.plot(badX, badY, ',', color=badColor, label=badLabel)
# draw some extra informational lines
_draw_x_equals_y_line(axes, epsilon=epsilon)
(no author)
committed
# make a key to explain our plot
# as long as things have been plotted with proper labels they should show up here
axes.legend(loc=0, markerscale=3.0) # Note: at the moment markerscale doesn't seem to work
# and some informational stuff
axes.set_title(title)
plt.xlabel(xLabel)
plt.ylabel(yLabel)
# format our axes so they display gracefully
yFormatter = FormatStrFormatter("%4.4g")
axes.yaxis.set_major_formatter(yFormatter)
xFormatter = FormatStrFormatter("%4.4g")
axes.xaxis.set_major_formatter(xFormatter)
return figure
(no author)
committed
# build a hexbin plot of the x,y points and show the density of the point distribution
(no author)
committed
def create_hexbin_plot(dataX, dataY, title, xLabel, yLabel, epsilon=None) :
(no author)
committed
# make the figure
figure = plt.figure()
axes = figure.add_subplot(111)
# the hexbin plot of the good data
plt.hexbin(dataX, dataY, bins='log', cmap=cm.jet)
plt.axis([dataX.min(), dataX.max(), dataY.min(), dataY.max()])
# create a color bar
cb = plt.colorbar()
cb.set_label('log10 (count + 1)')
(no author)
committed
# draw some extra informational lines
_draw_x_equals_y_line(axes, color='w', epsilon=epsilon, epsilonColor='k')
(no author)
committed
# and some informational stuff
axes.set_title(title)
plt.xlabel(xLabel)
plt.ylabel(yLabel)
# format our axes so they display gracefully
yFormatter = FormatStrFormatter("%4.4g")
axes.yaxis.set_major_formatter(yFormatter)
xFormatter = FormatStrFormatter("%4.4g")
axes.xaxis.set_major_formatter(xFormatter)
return figure
(no author)
committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def _draw_x_equals_y_line(axes, color='k', style='--', epsilon=None, epsilonColor='#00FF00', epsilonStyle='--') :
"""
Draw the x = y line using the axes and color/style given
If epsilon is not None, also draw the +/- epsilon lines,
if they fall in the graph
"""
# get the bounds for our calculations and so we can reset the viewing window later
xbounds = axes.get_xbound()
ybounds = axes.get_ybound()
# figure out the size of the ranges
xrange = xbounds[1] - xbounds[0]
yrange = ybounds[1] - ybounds[0]
# draw the x=y line
perfect = [max(xbounds[0], ybounds[0]), min(xbounds[1], ybounds[1])]
axes.plot(perfect, perfect, style, color=color, label='A = B')
# now draw the epsilon bound lines if they are visible and the lines won't be the same as A = B
if (not (epsilon is None)) and (epsilon > 0.0) and (epsilon < xrange) and (epsilon < yrange):
# plot the top line
axes.plot([perfect[0], perfect[1] - epsilon], [perfect[0] + epsilon, perfect[1]], epsilonStyle, color=epsilonColor, label='+/-epsilon')
# plot the bottom line
axes.plot([perfect[0] + epsilon, perfect[1]], [perfect[0], perfect[1] - epsilon], epsilonStyle, color=epsilonColor)
# reset the bounds
axes.set_xbound(xbounds)
axes.set_ybound(ybounds)
(no author)
committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# build a histogram figure of the given data with the given title and number of bins
def create_histogram(data, bins, title, xLabel, yLabel, displayStats=False) :
# make the figure
figure = plt.figure()
axes = figure.add_subplot(111)
if (data is None) or (len(data) <= 0) :
return figure
# the histogram of the data
n, bins, patches = plt.hist(data, bins)
# format our axes so they display gracefully
yFormatter = FormatStrFormatter("%3.3g")
axes.yaxis.set_major_formatter(yFormatter)
xFormatter = FormatStrFormatter("%.4g")
axes.xaxis.set_major_formatter(xFormatter)
# and some informational stuff
axes.set_title(title)
plt.xlabel(xLabel)
plt.ylabel(yLabel)
# if stats were passed in, put some of the information on the graph
# the location is in the form x, y (I think)
if displayStats :
# info on the basic stats
tempMask = ones(data.shape, dtype=bool)
tempStats = statistics.NumericalComparisonStatistics.basic_analysis(data, tempMask)
(no author)
committed
medianVal = tempStats['median_diff']
meanVal = tempStats['mean_diff']
stdVal = tempStats['std_diff']
numPts = data.size
(no author)
committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# info on the display of our statistics
xbounds = axes.get_xbound()
numBinsToUse = len(bins)
xrange = xbounds[1] - xbounds[0]
binSize = xrange / float(numBinsToUse)
# build the display string
statText = ('%1.2e' % numPts) + ' data points'
statText = statText + '\n' + 'mean: ' + report.make_formatted_display_string(meanVal)
statText = statText + '\n' + 'median: ' + report.make_formatted_display_string(medianVal)
statText = statText + '\n' + 'std: ' + report.make_formatted_display_string(stdVal)
statText = statText + '\n\n' + 'bins: ' + report.make_formatted_display_string(numBinsToUse)
statText = statText + '\n' + 'bin size ' + report.make_formatted_display_string(binSize)
# figure out where to place the text and put it on the figure
centerOfDisplay = xbounds[0] + (float(xrange) / 2.0)
xValToUse = 0.67
# if most of the values will be on the right, move our text to the left...
if (medianVal > centerOfDisplay) :
xValToUse = 0.17
figtext(xValToUse, 0.60, statText)
return figure
# create a figure including our data mapped onto a map at the lon/lat given
# the colorMap parameter can be used to control the colors the figure is drawn in
# if any masks are passed in the tagData list they will be plotted as an overlays
# set on the existing image
def create_mapped_figure(data, latitude, longitude, baseMapInstance, boundingAxes, title,
invalidMask=None, colorMap=None, tagData=None,
dataRanges=None, dataRangeNames=None, dataRangeColors=None, **kwargs) :
# make a clean version of our lon/lat
latitudeClean = ma.array(latitude, mask=~invalidMask)
longitudeClean = ma.array(longitude, mask=~invalidMask)
# build the plot
figure = plt.figure()
axes = figure.add_subplot(111)
# build extra info to go to the map plotting function
kwargs = { }
# figure the range for the color bars
# this is controllable with the "dataRanges" parameter for discrete data display
if not (data is None) :
if dataRanges is None :
dataRanges = _make_range(data, ~invalidMask, 50, offset_to_range=offsetToRange)
(no author)
committed
else: # make sure the user range will not discard data TODO, find a better way to handle this
dataRanges[0] = dataRanges[0] - offsetToRange
dataRanges[len(dataRanges) - 1] = dataRanges[len(dataRanges) - 1] + offsetToRange
kwargs['levelsToUse'] = dataRanges
if dataRangeColors is not None :
kwargs['colors'] = dataRangeColors # add in the list of colors (may be None)
# if we've got a color map, pass it to the list of things we want to tell the plotting function
if not (colorMap is None) :
kwargs['cmap'] = colorMap
# draw our data placed on a map
#bMap, x, y = maps.mapshow(longitudeClean, latitudeClean, data, boundingAxes, **kwargs)
maps.draw_basic_features(baseMapInstance, boundingAxes)
bMap, x, y = maps.show_lon_lat_data(longitudeClean, latitudeClean, baseMapInstance, data=data, **kwargs)
# and some informational stuff
axes.set_title(title)
# show a generic color bar
doLabelRanges = False
if not (data is None) :
(no author)
committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# if there are specific requested labels, add them
if not (dataRangeNames is None) :
# if we don't have exactly the right number of range names to label the ranges
# then label the tick marks
if not (len(dataRangeNames) is (len(dataRanges) - 1)) :
cbar.ax.set_yticklabels(dataRangeNames)
else : # we will want to label the ranges themselves
cbar.ax.set_yticklabels(dataRangeNames) # todo, this line is temporary
doLabelRanges = True
numTroublePoints = _plot_tag_data_mapped(bMap, tagData, x, y)
print ('number of trouble points: ' + str(numTroublePoints))
# if we still need to label the ranges, do it now that our fake axis won't mess the trouble points up
if doLabelRanges :
""" TODO get this working properly
fakeAx = plt.axes ([0.77, 0.05, 0.2, 0.9], frameon=False)
fakeAx.xaxis.set_visible(False)
fakeAx.yaxis.set_visible(False)
testRect = Rectangle((0, 0), 1, 1, fc="r")
legendKey = fakeAx.legend([testRect], ["r\n\n\n"], mode="expand", ncol=1, borderaxespad=0.)
"""
return figure
# create a figure including a quiver plot of our vector data mapped onto a map at the lon/lat
# given, the colorMap parameter can be used to control the colors the figure is drawn.
# if any masks are passed in the tagData list they will be plotted as an overlays
# set on the existing image
# TODO, this method has not been throughly tested
def create_quiver_mapped_figure(data, latitude, longitude, baseMapInstance, boundingAxes, title,
invalidMask=None, tagData=None, uData=None, vData=None, **kwargs) :
# make a clean version of our lon/lat/data
latitudeClean = latitude[~invalidMask]
longitudeClean = longitude[~invalidMask]
colorData = None
if (data is not None) :
colorData = data[~invalidMask]
uDataClean = None
vDataClean = None
if (uData is not None) and (vData is not None) :
uDataClean = uData[~invalidMask]
vDataClean = vData[~invalidMask]
tagDataClean = None
if tagData is not None :
tagDataClean = tagData[~invalidMask]
# build the plot
figure = plt.figure()
axes = figure.add_subplot(111)
# draw our data placed on a map
maps.draw_basic_features(baseMapInstance, boundingAxes)
(no author)
committed
bMap, x, y = maps.show_quiver_plot (longitudeClean, latitudeClean, baseMapInstance, (uDataClean, vDataClean), colordata=colorData)
(no author)
committed
# show the title
axes.set_title(title)
numTroublePoints = _plot_tag_data_mapped(bMap, tagDataClean, x, y)
return figure
def create_simple_figure(data, figureTitle, invalidMask=None, tagData=None, colorMap=None, colorbarLimits=None) :
(no author)
committed
"""
create a simple figure showing the data given masked by the invalid mask
any tagData passed in will be interpreted as trouble points on the image and plotted as a
filled contour overlay in green on the image
if a colorMap is given it will be used to plot the data,
if not the default colorMap for imshow will be used
"""
cleanData = ma.array(data, mask=invalidMask)
# build the plot
figure = plt.figure()
axes = figure.add_subplot(111)
# build extra info to go to the map plotting function
kwargs = { }
# if we've got a color map, pass it to the list of things we want to tell the plotting function
if not (colorMap is None) :
kwargs['cmap'] = colorMap
if (data is not None) and (sum(invalidMask) < invalidMask.size) :
# draw our data
im = imshow(cleanData, **kwargs)
# if our colorbar has limits set those
if colorbarLimits is not None :
clim(vmin=colorbarLimits[0], vmax=colorbarLimits[-1])
(no author)
committed
# make a color bar
(no author)
committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# and some informational stuff
axes.set_title(figureTitle)
numTroublePoints = _plot_tag_data_simple(tagData)
return figure
def create_line_plot_figure(dataList, figureTitle) :
"""
create a basic line plot of the data vs. it's index, ignoring any invalid data
if tagData is given, under-label those points with green circles
Each entry in the dataList should be a tupple containing:
(data, invalidMask, colorString, labelName, tagData)
The color string describes a color for plotting in matplotlib.
The label names will be used for the legend, which will be shown if there is
more than one set of data plotted or if there is tag data plotted. Invalid
masks, colors, and label names may be given as None, in which case no data
will be masked and a default label of "data#" (where # is an arbitrary
unique counter) will be used.
tagData may also be passed as None if tagging is not desired in the output.
"""
# build the plot
figure = plt.figure()
axes = figure.add_subplot(111)
# plot each of the data sets
dataSetLabelNumber = 1
minTagPts = -1
maxTagPts = -1
plottedTagData = False
for dataSet, invalidMask, colorString, labelName, tagData in dataList :
# if we don't have these, set them to defaults
if invalidMask is None :
invalidMask = zeros(dataSet.shape, dtype=bool)
if labelName is None :
labelName = 'data' + str(dataSetLabelNumber)
dataSetLabelNumber = dataSetLabelNumber + 1
if colorString is None:
colorString = ''
if (dataSet is not None) and (sum(invalidMask) < invalidMask.size) :
# if we don't have a real min yet, set it based on the size
if minTagPts < 0 :
minTagPts = dataSet.size + 1
indexData = ma.array(range(dataSet.size), mask=invalidMask)
cleanData = ma.array(dataSet, mask=invalidMask)
# plot the tag data and gather information about it
if tagData is not None :
plottedTagData = True
numTroublePoints = sum(tagData)
LOG.debug('\t\tnumber of trouble points: ' + str(numTroublePoints))
if numTroublePoints < minTagPts:
minTagPts = numTroublePoints
if numTroublePoints > maxTagPts :
maxTagPts = numTroublePoints
# if we have trouble points, we need to show them
if numTroublePoints > 0:
cleanTagData = ma.array(dataSet, mask=~tagData | invalidMask)
axes.plot(indexData, cleanTagData, 'yo', label='trouble point')
axes.plot(indexData, cleanData, '-' + colorString, label=labelName)
# display the number of trouble points on the report if we were passed
# a set of tag data and we were able to compare it to some actual data
if (plottedTagData and (minTagPts >= 0) and (maxTagPts >=0)) :
troublePtString = '\nMarking '
if (minTagPts == maxTagPts) :
troublePtString = troublePtString + str(minTagPts) + ' Trouble Points with Yellow Circles'
else :
troublePtString = (troublePtString + 'between ' + str(minTagPts) + ' and ' + str(maxTagPts) + ' Trouble Points'
+ '\non the various data sets (using Yellow Circles)')
plt.xlabel(troublePtString)
if (len(dataList) > 1) or plottedTagData :
# make a key to explain our plot
# as long as things have been plotted with proper labels they should show up here
(no author)
committed
axes.legend(loc=0, markerscale=3.0) # Note: at the moment markerscale doesn't seem to work