Skip to content
Snippets Groups Projects
Commit edcdae6b authored by tomrink's avatar tomrink
Browse files

snapshot..

parent d3f79c5c
No related branches found
No related tags found
No related merge requests found
...@@ -208,7 +208,8 @@ class SRCNN: ...@@ -208,7 +208,8 @@ class SRCNN:
self.test_data_nda = None self.test_data_nda = None
self.test_label_nda = None self.test_label_nda = None
self.n_chans = len(data_params) + 2 # self.n_chans = len(data_params) + 2
self.n_chans = 1
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
...@@ -241,25 +242,25 @@ class SRCNN: ...@@ -241,25 +242,25 @@ class SRCNN:
DO_ADD_NOISE = True DO_ADD_NOISE = True
data_norm = [] data_norm = []
for param in data_params: # for param in data_params:
idx = params.index(param) # idx = params.index(param)
# tmp = input_data[:, idx, slc_y_2, slc_x_2] # # tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = input_data[:, idx, slc_y, slc_x] # tmp = input_data[:, idx, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct) # tmp = normalize(tmp, param, mean_std_dct)
if DO_ADD_NOISE: # if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) # tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
# tmp = resample_2d_linear(x_2, y_2, tmp, t, s) # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
data_norm.append(tmp) # data_norm.append(tmp)
# -------------------------- # # --------------------------
param = 'refl_0_65um_nom' # param = 'refl_0_65um_nom'
idx = params.index(param) # idx = params.index(param)
# tmp = input_data[:, idx, slc_y_2, slc_x_2] # # tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = input_data[:, idx, slc_y, slc_x] # tmp = input_data[:, idx, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct) # tmp = normalize(tmp, param, mean_std_dct)
if DO_ADD_NOISE: # if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) # tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
# tmp = resample_2d_linear(x_2, y_2, tmp, t, s) # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
data_norm.append(tmp) # data_norm.append(tmp)
# -------- # --------
tmp = input_data[:, label_idx, slc_y_2, slc_x_2] tmp = input_data[:, label_idx, slc_y_2, slc_x_2]
if label_param != 'cloud_probability': if label_param != 'cloud_probability':
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment