From edcdae6b99f61e0400f3e5102c4174ff063ae64c Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sat, 10 Dec 2022 10:47:11 -0600 Subject: [PATCH] snapshot.. --- modules/deeplearning/srcnn_l1b_l2.py | 41 ++++++++++++++-------------- 1 file changed, 21 insertions(+), 20 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index a460a0d3..bad986d9 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -208,7 +208,8 @@ class SRCNN: self.test_data_nda = None self.test_label_nda = None - self.n_chans = len(data_params) + 2 + # self.n_chans = len(data_params) + 2 + self.n_chans = 1 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) @@ -241,25 +242,25 @@ class SRCNN: DO_ADD_NOISE = True data_norm = [] - for param in data_params: - idx = params.index(param) - # tmp = input_data[:, idx, slc_y_2, slc_x_2] - tmp = input_data[:, idx, slc_y, slc_x] - tmp = normalize(tmp, param, mean_std_dct) - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - data_norm.append(tmp) - # -------------------------- - param = 'refl_0_65um_nom' - idx = params.index(param) - # tmp = input_data[:, idx, slc_y_2, slc_x_2] - tmp = input_data[:, idx, slc_y, slc_x] - tmp = normalize(tmp, param, mean_std_dct) - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - data_norm.append(tmp) + # for param in data_params: + # idx = params.index(param) + # # tmp = input_data[:, idx, slc_y_2, slc_x_2] + # tmp = input_data[:, idx, slc_y, slc_x] + # tmp = normalize(tmp, param, mean_std_dct) + # if DO_ADD_NOISE: + # tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + # data_norm.append(tmp) + # # -------------------------- + # param = 'refl_0_65um_nom' + # idx = params.index(param) + # # tmp = input_data[:, idx, slc_y_2, slc_x_2] + # tmp = input_data[:, idx, slc_y, slc_x] + # tmp = normalize(tmp, param, mean_std_dct) + # if DO_ADD_NOISE: + # tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + # data_norm.append(tmp) # -------- tmp = input_data[:, label_idx, slc_y_2, slc_x_2] if label_param != 'cloud_probability': -- GitLab