Skip to content
Snippets Groups Projects
Commit e673694b authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 8f9482fa
No related branches found
No related tags found
No related merge requests found
......@@ -729,16 +729,22 @@ class SRCNN:
t1 = time.time()
print('read data time: ', (t1 - t0))
self.run_inference_(bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, LEN_Y, LEN_X)
self.run_inference_(bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, 2*LEN_Y, 2*LEN_X)
def run_inference_(self, bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, LEN_Y, LEN_X):
slc_x = slice(0, (LEN_X - 16) + 4)
slc_y = slice(0, (LEN_Y - 16) + 4)
x_2 = np.arange((LEN_X - 16) + 4)
y_2 = np.arange((LEN_Y - 16) + 4)
t = np.arange(0, (LEN_X - 16) + 4, 0.5)
s = np.arange(0, (LEN_Y - 16) + 4, 0.5)
self.slc_x_m = slice(1, int(LEN_X / 2) + 4)
self.slc_y_m = slice(1, int(LEN_Y / 2) + 4)
self.slc_x = slice(3, LEN_X + 5)
self.slc_y = slice(3, LEN_Y + 5)
self.slc_x_2 = slice(2, LEN_X + 7, 2)
self.slc_y_2 = slice(2, LEN_Y + 7, 2)
self.x_2 = np.arange(int(LEN_X / 2) + 3)
self.y_2 = np.arange(int(LEN_Y / 2) + 3)
self.t = np.arange(0, int(LEN_X / 2) + 3, 0.5)
self.s = np.arange(0, int(LEN_Y / 2) + 3, 0.5)
self.x_k = slice(1, LEN_X + 3)
self.y_k = slice(1, LEN_Y + 3)
# refl = np.where(np.isnan(refl), 0, refl)
# refl = refl[slc_y, slc_x]
......@@ -750,42 +756,44 @@ class SRCNN:
t0 = time.time()
bt = np.where(np.isnan(bt), 0, bt)
bt = bt[slc_y, slc_x]
bt = bt[self.slc_y_m, self.slc_x_m]
bt = np.expand_dims(bt, axis=0)
bt_us = upsample_static(bt, x_2, y_2, t, s, None, None)
# bt_us = upsample_static(bt, x_2, y_2, t, s, None, None)
bt_us = self.upsample(bt)
bt_us = smooth_2d(bt_us)
bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct)
print('BT done')
refl_sub_lo = refl_sub_lo[slc_y, slc_x]
cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd)
cld_opd = cld_opd[self.slc_y_m, self.slc_x_m]
cld_opd = np.expand_dims(cld_opd, axis=0)
# cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None)
cld_opd_us = self.upsample(cld_opd)
cld_opd_us = smooth_2d(cld_opd_us)
cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct)
refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0)
refl_sub_lo = upsample_nearest(refl_sub_lo)
refl_sub_lo = refl_sub_lo[self.slc_y, self.slc_x]
refl_sub_lo = normalize(refl_sub_lo, 'refl_0_65um_nom', mean_std_dct)
refl_sub_hi = refl_sub_hi[slc_y, slc_x]
refl_sub_hi = np.expand_dims(refl_sub_hi, axis=0)
refl_sub_hi = upsample_nearest(refl_sub_hi)
refl_sub_hi = refl_sub_hi[self.slc_y, self.slc_x]
refl_sub_hi = normalize(refl_sub_hi, 'refl_0_65um_nom', mean_std_dct)
refl_sub_std = refl_sub_std[slc_y, slc_x]
refl_sub_std = np.expand_dims(refl_sub_std, axis=0)
refl_sub_std = upsample_nearest(refl_sub_std)
refl_sub_std = refl_sub_std[self.slc_y, self.slc_x]
cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd)
cld_opd = cld_opd[slc_y, slc_x]
cld_opd = np.expand_dims(cld_opd, axis=0)
cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None)
cld_opd_us = smooth_2d(cld_opd_us)
cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct)
print('OPD done')
t1 = time.time()
print('upsample/normalize time: ', (t1 - t0))
data = np.stack([bt_us, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd_us], axis=3)
# data = self.do_inference(data)
cld_opd_sres = self.do_inference(data)
cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct)
return None
return cld_opd_sres
def run_restore_static(directory, ckpt_dir, out_file=None):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment