From e673694be5899f86184f759c2d9d0bdb1890e1e6 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 6 Jul 2023 12:39:45 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_opd_srcnn_abi.py | 52 ++++++++++++--------- 1 file changed, 30 insertions(+), 22 deletions(-) diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 0fb761bd..40d2020a 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -729,16 +729,22 @@ class SRCNN: t1 = time.time() print('read data time: ', (t1 - t0)) - self.run_inference_(bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, LEN_Y, LEN_X) + self.run_inference_(bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, 2*LEN_Y, 2*LEN_X) def run_inference_(self, bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, LEN_Y, LEN_X): - slc_x = slice(0, (LEN_X - 16) + 4) - slc_y = slice(0, (LEN_Y - 16) + 4) - x_2 = np.arange((LEN_X - 16) + 4) - y_2 = np.arange((LEN_Y - 16) + 4) - t = np.arange(0, (LEN_X - 16) + 4, 0.5) - s = np.arange(0, (LEN_Y - 16) + 4, 0.5) + self.slc_x_m = slice(1, int(LEN_X / 2) + 4) + self.slc_y_m = slice(1, int(LEN_Y / 2) + 4) + self.slc_x = slice(3, LEN_X + 5) + self.slc_y = slice(3, LEN_Y + 5) + self.slc_x_2 = slice(2, LEN_X + 7, 2) + self.slc_y_2 = slice(2, LEN_Y + 7, 2) + self.x_2 = np.arange(int(LEN_X / 2) + 3) + self.y_2 = np.arange(int(LEN_Y / 2) + 3) + self.t = np.arange(0, int(LEN_X / 2) + 3, 0.5) + self.s = np.arange(0, int(LEN_Y / 2) + 3, 0.5) + self.x_k = slice(1, LEN_X + 3) + self.y_k = slice(1, LEN_Y + 3) # refl = np.where(np.isnan(refl), 0, refl) # refl = refl[slc_y, slc_x] @@ -750,42 +756,44 @@ class SRCNN: t0 = time.time() bt = np.where(np.isnan(bt), 0, bt) - bt = bt[slc_y, slc_x] + bt = bt[self.slc_y_m, self.slc_x_m] bt = np.expand_dims(bt, axis=0) - bt_us = upsample_static(bt, x_2, y_2, t, s, None, None) + # bt_us = upsample_static(bt, x_2, y_2, t, s, None, None) + bt_us = self.upsample(bt) bt_us = smooth_2d(bt_us) bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct) - print('BT done') - refl_sub_lo = refl_sub_lo[slc_y, slc_x] + cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) + cld_opd = cld_opd[self.slc_y_m, self.slc_x_m] + cld_opd = np.expand_dims(cld_opd, axis=0) + # cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None) + cld_opd_us = self.upsample(cld_opd) + cld_opd_us = smooth_2d(cld_opd_us) + cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct) + refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0) refl_sub_lo = upsample_nearest(refl_sub_lo) + refl_sub_lo = refl_sub_lo[self.slc_y, self.slc_x] refl_sub_lo = normalize(refl_sub_lo, 'refl_0_65um_nom', mean_std_dct) - refl_sub_hi = refl_sub_hi[slc_y, slc_x] refl_sub_hi = np.expand_dims(refl_sub_hi, axis=0) refl_sub_hi = upsample_nearest(refl_sub_hi) + refl_sub_hi = refl_sub_hi[self.slc_y, self.slc_x] refl_sub_hi = normalize(refl_sub_hi, 'refl_0_65um_nom', mean_std_dct) - refl_sub_std = refl_sub_std[slc_y, slc_x] refl_sub_std = np.expand_dims(refl_sub_std, axis=0) refl_sub_std = upsample_nearest(refl_sub_std) + refl_sub_std = refl_sub_std[self.slc_y, self.slc_x] - cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) - cld_opd = cld_opd[slc_y, slc_x] - cld_opd = np.expand_dims(cld_opd, axis=0) - cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None) - cld_opd_us = smooth_2d(cld_opd_us) - cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct) - print('OPD done') t1 = time.time() print('upsample/normalize time: ', (t1 - t0)) data = np.stack([bt_us, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd_us], axis=3) - # data = self.do_inference(data) + cld_opd_sres = self.do_inference(data) + cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) - return None + return cld_opd_sres def run_restore_static(directory, ckpt_dir, out_file=None): -- GitLab