Skip to content
Snippets Groups Projects
Commit e47f935f authored by tomrink's avatar tomrink
Browse files

snapshot...

parent c12301be
Branches
No related tags found
No related merge requests found
...@@ -248,14 +248,15 @@ class SRCNN: ...@@ -248,14 +248,15 @@ class SRCNN:
data_norm = [] data_norm = []
for param in data_params: for param in data_params:
idx = params.index(param) idx = params.index(param)
# tmp = input_data[:, idx, slc_y, slc_x]
tmp = input_data[:, idx, :, :] tmp = input_data[:, idx, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = smooth_2d(tmp, sigma=1.0) tmp = smooth_2d(tmp, sigma=1.0)
tmp = tmp[:, slc_y_2, slc_x_2] tmp = tmp[:, slc_y_2, slc_x_2]
tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
tmp = tmp[:, y_k, x_k]
tmp = normalize(tmp, param, mean_std_dct) tmp = normalize(tmp, param, mean_std_dct)
if DO_ADD_NOISE: if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
# tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
data_norm.append(tmp) data_norm.append(tmp)
# # -------------------------- # # --------------------------
# param = 'refl_0_65um_nom' # param = 'refl_0_65um_nom'
...@@ -268,10 +269,12 @@ class SRCNN: ...@@ -268,10 +269,12 @@ class SRCNN:
# # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
# data_norm.append(tmp) # data_norm.append(tmp)
# -------- # --------
#tmp = input_data[:, label_idx, slc_y_2, slc_x_2]
tmp = input_data[:, label_idx, :, :] tmp = input_data[:, label_idx, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = smooth_2d(tmp, sigma=1.0) tmp = smooth_2d(tmp, sigma=1.0)
tmp = tmp[:, slc_y_2, slc_x_2] tmp = tmp[:, slc_y_2, slc_x_2]
tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
tmp = tmp[:, y_k, x_k]
if label_param != 'cloud_probability': if label_param != 'cloud_probability':
tmp = normalize(tmp, label_param, mean_std_dct) tmp = normalize(tmp, label_param, mean_std_dct)
if DO_ADD_NOISE: if DO_ADD_NOISE:
...@@ -281,16 +284,12 @@ class SRCNN: ...@@ -281,16 +284,12 @@ class SRCNN:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
tmp = np.where(tmp < 0.0, 0.0, tmp) tmp = np.where(tmp < 0.0, 0.0, tmp)
tmp = np.where(tmp > 1.0, 1.0, tmp) tmp = np.where(tmp > 1.0, 1.0, tmp)
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
tmp = tmp[:, y_k, x_k]
data_norm.append(tmp) data_norm.append(tmp)
# --------- # ---------
data = np.stack(data_norm, axis=3) data = np.stack(data_norm, axis=3)
data = data.astype(np.float32) data = data.astype(np.float32)
# ----------------------------------------------------- # -----------------------------------------------------
# ----------------------------------------------------- # -----------------------------------------------------
#label = input_data[:, label_idx, y_128, x_128]
label = input_data[:, label_idx, :, :] label = input_data[:, label_idx, :, :]
# label = smooth_2d(label, sigma=1.0) # label = smooth_2d(label, sigma=1.0)
label = label[:, y_128, x_128] label = label[:, y_128, x_128]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment