diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index c435a6a65b505c7c6df9d01404264896ec93b3d5..fd10b5321ca2199d75c6eec9043b4c688f1604d7 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -248,14 +248,15 @@ class SRCNN: data_norm = [] for param in data_params: idx = params.index(param) - # tmp = input_data[:, idx, slc_y, slc_x] tmp = input_data[:, idx, :, :] + tmp = np.where(np.isnan(tmp), 0, tmp) tmp = smooth_2d(tmp, sigma=1.0) tmp = tmp[:, slc_y_2, slc_x_2] + tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + tmp = tmp[:, y_k, x_k] tmp = normalize(tmp, param, mean_std_dct) if DO_ADD_NOISE: tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) data_norm.append(tmp) # # -------------------------- # param = 'refl_0_65um_nom' @@ -268,10 +269,12 @@ class SRCNN: # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) # data_norm.append(tmp) # -------- - #tmp = input_data[:, label_idx, slc_y_2, slc_x_2] tmp = input_data[:, label_idx, :, :] + tmp = np.where(np.isnan(tmp), 0, tmp) tmp = smooth_2d(tmp, sigma=1.0) tmp = tmp[:, slc_y_2, slc_x_2] + tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + tmp = tmp[:, y_k, x_k] if label_param != 'cloud_probability': tmp = normalize(tmp, label_param, mean_std_dct) if DO_ADD_NOISE: @@ -281,16 +284,12 @@ class SRCNN: tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) tmp = np.where(tmp < 0.0, 0.0, tmp) tmp = np.where(tmp > 1.0, 1.0, tmp) - tmp = np.where(np.isnan(tmp), 0, tmp) - tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - tmp = tmp[:, y_k, x_k] data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) # ----------------------------------------------------- # ----------------------------------------------------- - #label = input_data[:, label_idx, y_128, x_128] label = input_data[:, label_idx, :, :] # label = smooth_2d(label, sigma=1.0) label = label[:, y_128, x_128]