Skip to content
Snippets Groups Projects
Commit e336db62 authored by tomrink's avatar tomrink
Browse files

`snapshot...`

parent c256943e
Branches
No related tags found
No related merge requests found
......@@ -59,8 +59,7 @@ params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_s
# data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
sub_fields = ['refl_substddev_ch01']
sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
# sub_fields = ['refl_stddev3x3_ch01']
label_idx_i = params_i.index(label_param)
......@@ -211,7 +210,7 @@ class SRCNN:
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 4
self.n_chans = 3
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
......@@ -274,21 +273,22 @@ class SRCNN:
data_norm.append(tmp)
# High res refectance ----------
# idx = params_i.index('refl_0_65um_nom')
# tmp = input_label[:, idx, :, :]
# tmp = np.where(np.isnan(tmp), 0, tmp)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(tmp[:, self.slc_y, self.slc_x])
idx = params_i.index('refl_0_65um_nom')
tmp = input_label[:, idx, :, :]
tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_2, self.slc_x_2]
tmp = self.upsample(tmp)
tmp = smooth_2d(tmp)
tmp = normalize(tmp, label_param, mean_std_dct)
data_norm.append(tmp)
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
data_norm.append(tmp[:, self.slc_y, self.slc_x])
# High res reflectance down 2 ---------
# idx = params_i.index('refl_0_65um_nom')
# tmp = input_label[:, idx, :, :]
# tmp = tmp.copy()
# tmp = np.where(np.isnan(tmp), 0.0, tmp)
# tmp = tmp[:, self.slc_y_2, self.slc_x_2]
# tmp = self.upsample(tmp)
# tmp = smooth_2d(tmp)
# tmp = normalize(tmp, label_param, mean_std_dct)
# data_norm.append(tmp)
tmp = input_label[:, label_idx_i, :, :]
tmp = tmp.copy()
......@@ -312,16 +312,16 @@ class SRCNN:
# tmp = np.where(np.isnan(tmp), 0.0, tmp)
# data_norm.append(tmp)
for param in sub_fields:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = upsample_nearest(tmp)
tmp = tmp[:, self.slc_y, self.slc_x]
if param != 'refl_substddev_ch01':
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
else:
tmp = np.where(np.isnan(tmp), 0, tmp)
data_norm.append(tmp)
# for param in sub_fields:
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
# tmp = upsample_nearest(tmp)
# tmp = tmp[:, self.slc_y, self.slc_x]
# if param != 'refl_substddev_ch01':
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# else:
# tmp = np.where(np.isnan(tmp), 0, tmp)
# data_norm.append(tmp)
# ---------------------------------------------------
data = np.stack(data_norm, axis=3)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment