diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index d1447321248c35c8c12eee7759ba148d0b74900e..5c08ee468b25e05767e417cd8399a1c17a12e748 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -59,8 +59,7 @@ params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_s # data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_half = ['temp_11_0um_nom'] data_params_full = ['refl_0_65um_nom'] -# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] -sub_fields = ['refl_substddev_ch01'] +sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] # sub_fields = ['refl_stddev3x3_ch01'] label_idx_i = params_i.index(label_param) @@ -211,7 +210,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 4 + self.n_chans = 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -274,21 +273,22 @@ class SRCNN: data_norm.append(tmp) # High res refectance ---------- - # idx = params_i.index('refl_0_65um_nom') - # tmp = input_label[:, idx, :, :] - # tmp = np.where(np.isnan(tmp), 0, tmp) - # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - # data_norm.append(tmp[:, self.slc_y, self.slc_x]) - idx = params_i.index('refl_0_65um_nom') tmp = input_label[:, idx, :, :] - tmp = tmp.copy() - tmp = np.where(np.isnan(tmp), 0.0, tmp) - tmp = tmp[:, self.slc_y_2, self.slc_x_2] - tmp = self.upsample(tmp) - tmp = smooth_2d(tmp) - tmp = normalize(tmp, label_param, mean_std_dct) - data_norm.append(tmp) + tmp = np.where(np.isnan(tmp), 0, tmp) + tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + data_norm.append(tmp[:, self.slc_y, self.slc_x]) + + # High res reflectance down 2 --------- + # idx = params_i.index('refl_0_65um_nom') + # tmp = input_label[:, idx, :, :] + # tmp = tmp.copy() + # tmp = np.where(np.isnan(tmp), 0.0, tmp) + # tmp = tmp[:, self.slc_y_2, self.slc_x_2] + # tmp = self.upsample(tmp) + # tmp = smooth_2d(tmp) + # tmp = normalize(tmp, label_param, mean_std_dct) + # data_norm.append(tmp) tmp = input_label[:, label_idx_i, :, :] tmp = tmp.copy() @@ -312,16 +312,16 @@ class SRCNN: # tmp = np.where(np.isnan(tmp), 0.0, tmp) # data_norm.append(tmp) - for param in sub_fields: - idx = params.index(param) - tmp = input_data[:, idx, :, :] - tmp = upsample_nearest(tmp) - tmp = tmp[:, self.slc_y, self.slc_x] - if param != 'refl_substddev_ch01': - tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - else: - tmp = np.where(np.isnan(tmp), 0, tmp) - data_norm.append(tmp) + # for param in sub_fields: + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + # tmp = upsample_nearest(tmp) + # tmp = tmp[:, self.slc_y, self.slc_x] + # if param != 'refl_substddev_ch01': + # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + # else: + # tmp = np.where(np.isnan(tmp), 0, tmp) + # data_norm.append(tmp) # --------------------------------------------------- data = np.stack(data_norm, axis=3)