Skip to content
Snippets Groups Projects
Commit dfac23f4 authored by tomrink's avatar tomrink
Browse files

initial commit for aircraft icing

parent 025afca8
No related branches found
No related tags found
No related merge requests found
import tensorflow as tf
from util.setup import logdir, modeldir, cachepath
import subprocess
import os, datetime
import numpy as np
import xarray as xr
import pickle
from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, \
split_matchup, shuffle_dict, get_interpolated_scalar, get_num_samples, get_time_tuple_utc, get_profile
LOG_DEVICE_PLACEMENT = False
CACHE_DATA_IN_MEM = True
CACHE_GFS = True
PROC_BATCH_SIZE = 60
PROC_BATCH_BUFFER_SIZE = 50000
NumLabels = 1
BATCH_SIZE = 256
NUM_EPOCHS = 200
TRACK_MOVING_AVERAGE = False
DAY_NIGHT = 'ANY'
TRIPLET = False
CONV3D = False
abi_2km_channels = ['14', '08', '11', '13', '15', '16']
# abi_2km_channels = ['08', '09', '10']
abi_hkm_channels = []
# abi_channels = abi_2km_channels + abi_hkm_channels
abi_channels = abi_2km_channels
abi_mean = {'08': 236.014, '14': 275.229, '02': 0.049, '11': 273.582, '13': 275.796, '15': 272.928, '16': 260.956, '09': 244.502, '10': 252.375}
abi_std = {'08': 7.598, '14': 20.443, '02': 0.082, '11': 19.539, '13': 20.431, '15': 20.104, '16': 15.720, '09': 9.827, '10': 11.765}
abi_valid_range = {'02': [0.001, 120], '08': [150, 350], '14': [150, 350], '11': [150, 350], '13': [150, 350], '15': [150, 350], '16': [150, 350], '09': [150, 350], '10': [150, 350]}
abi_half_width = {'08': 12, '14': 12, '02': 48, '11': 12, '13': 12, '15': 12, '16': 12, '09': 12, '10': 12}
#abi_half_width = {'08': 6, '14': 6, '02': 24, '11': 6, '13': 6, '15': 6, '16': 6, '09': 6, '10': 6}
#abi_half_width = {'08': 3, '14': 3, '02': 12, '11': 3, '13': 3, '15': 3, '16': 3, '09': 3, '10': 3}
abi_stride = {'08': 1, '14': 1, '02': 4, '11': 1, '13': 1, '15': 1, '16': 1, '09': 1, '10': 1}
img_width = 24
#img_width = 12
#img_width = 6
NUM_VERT_LEVELS = 26
NUM_VERT_PARAMS = 2
gfs_mean_temp = [225.481110,
218.950729,
215.830338,
212.063187,
209.348038,
208.787033,
213.728928,
218.298264,
223.061020,
229.190445,
236.095215,
242.589493,
248.333237,
253.357071,
257.768646,
261.599396,
264.793671,
267.667603,
270.408478,
272.841919,
274.929138,
276.826294,
277.786865,
278.834198,
279.980408,
281.308380]
gfs_mean_temp = np.array(gfs_mean_temp)
gfs_mean_temp = np.reshape(gfs_mean_temp, (1, gfs_mean_temp.shape[0]))
gfs_std_temp = [13.037852,
11.669035,
10.775956,
10.428216,
11.705231,
12.352798,
8.892235,
7.101064,
8.505628,
10.815929,
12.139559,
12.720000,
12.929382,
13.023590,
13.135534,
13.543551,
14.449997,
15.241049,
15.638563,
15.943666,
16.178715,
16.458992,
16.700863,
17.109579,
17.630177,
18.080544]
gfs_std_temp = np.array(gfs_std_temp)
gfs_std_temp = np.reshape(gfs_std_temp, (1, gfs_std_temp.shape[0]))
mean_std_dict = {'temperature': (gfs_mean_temp, gfs_std_temp), 'surface temperature': (279.35, 22.81),
'MSL pressure': (1010.64, 13.46), 'tropopause temperature': (208.17, 11.36), 'tropopause pressure': (219.62, 78.79)}
valid_range_dict = {'temperature': (150, 350), 'surface temperature': (150, 350), 'MSL pressure': (800, 1050),
'tropopause temperature': (150, 250), 'tropopause pressure': (100, 500)}
def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True):
with tf.name_scope(block_name):
if doDropout:
fc = tf.keras.layers.Dropout(drop_rate)(input)
fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
else:
fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input)
if doBatchNorm:
fc = tf.keras.layers.BatchNormalization()(fc)
print(fc.shape)
fc_skip = fc
if doDropout:
fc = tf.keras.layers.Dropout(drop_rate)(fc)
fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
if doBatchNorm:
fc = tf.keras.layers.BatchNormalization()(fc)
print(fc.shape)
if doDropout:
fc = tf.keras.layers.Dropout(drop_rate)(fc)
fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
if doBatchNorm:
fc = tf.keras.layers.BatchNormalization()(fc)
print(fc.shape)
if doDropout:
fc = tf.keras.layers.Dropout(drop_rate)(fc)
fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc)
if doBatchNorm:
fc = tf.keras.layers.BatchNormalization()(fc)
fc = fc + fc_skip
fc = tf.keras.layers.LeakyReLU()(fc)
print(fc.shape)
return fc
class IcingIntensityNN:
def __init__(self, gpu_device=0, datapath=None):
self.train_data = None
self.train_label = None
self.test_data = None
self.test_label = None
self.test_data_denorm = None
self.train_dataset = None
self.inner_train_dataset = None
self.test_dataset = None
self.X_img = None
self.X_prof = None
self.X_u = None
self.X_v = None
self.X_sfc = None
self.inputs = []
self.y = None
self.handle = None
self.inner_handle = None
self.in_mem_batch = None
self.matchup_dict = None
self.logits = None
self.predict_data = None
self.predict_dataset = None
self.mean_list = None
self.std_list = None
self.training_op = None
self.correct = None
self.accuracy = None
self.loss = None
self.pred_class = None
self.gpu_device = gpu_device
self.variable_averages = None
self.global_step = None
self.writer_train = None
self.writer_valid = None
self.OUT_OF_RANGE = False
self.abi = None
self.temp = None
self.wv = None
self.lbfp = None
self.sfc = None
self.in_mem_data_cache = {}
self.model = None
self.optimizer = None
self.train_loss = None
self.train_accuracy = None
self.test_loss = None
self.test_accuracy = None
self.learningRateSchedule = None
self.num_data_samples = None
self.initial_learning_rate = None
n_chans = len(abi_channels)
if TRIPLET:
n_chans *= 3
self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans))
self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS))
self.X_sfc = tf.keras.Input(shape=2)
self.inputs.append(self.X_img)
self.inputs.append(self.X_prof)
self.inputs.append(self.X_sfc)
self.DISK_CACHE = True
if datapath is not None:
self.DISK_CACHE = False
f = open(datapath, 'rb')
self.in_mem_data_cache = pickle.load(f)
f.close()
tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
def get_in_mem_data_batch(self, time_keys):
images = []
vprof = []
label = []
sfc = []
for key in time_keys:
if CACHE_DATA_IN_MEM:
tup = self.in_mem_data_cache.get(key)
if tup is not None:
images.append(tup[0])
vprof.append(tup[1])
label.append(tup[2])
sfc.append(tup[3])
continue
obs = self.matchup_dict.get(key)
if obs is None:
print('no entry for: ', key)
timestamp = obs[0][0]
print('not found in cache, processing key: ', key, get_time_tuple_utc(timestamp)[0])
gfs_0, time_0, gfs_1, time_1 = get_bounding_gfs_files(timestamp)
if (gfs_0 is None) and (gfs_1 is None):
print('no GFS for: ', get_time_tuple_utc(timestamp)[0])
continue
try:
gfs_0 = convert_file(gfs_0)
if gfs_1 is not None:
gfs_1 = convert_file(gfs_1)
except Exception as exc:
print(get_time_tuple_utc(timestamp)[0])
print(exc)
continue
ds_1 = None
try:
ds_0 = xr.open_dataset(gfs_0)
if gfs_1 is not None:
ds_1 = xr.open_dataset(gfs_1)
except Exception as exc:
print(exc)
continue
lons = obs[:, 2]
lats = obs[:, 1]
half_width = [abi_half_width.get(ch) for ch in abi_2km_channels]
strides = [abi_stride.get(ch) for ch in abi_2km_channels]
img_a_s, img_a_s_l, img_a_s_r, idxs_a = get_images(lons, lats, timestamp, abi_2km_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
if idxs_a.size == 0:
print('no images for: ', timestamp)
continue
idxs_b = None
if len(abi_hkm_channels) > 0:
half_width = [abi_half_width.get(ch) for ch in abi_hkm_channels]
strides = [abi_stride.get(ch) for ch in abi_hkm_channels]
img_b_s, img_b_s_l, img_b_s_r, idxs_b = get_images(lons, lats, timestamp, abi_hkm_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
if idxs_b.size == 0:
print('no hkm images for: ', timestamp)
continue
if idxs_b is None:
common_idxs = idxs_a
img_a_s = img_a_s[:, common_idxs, :, :]
img_s = img_a_s
if TRIPLET:
img_a_s_l = img_a_s_l[:, common_idxs, :, :]
img_a_s_r = img_a_s_r[:, common_idxs, :, :]
img_s_l = img_a_s_l
img_s_r = img_a_s_r
else:
common_idxs = np.intersect1d(idxs_a, idxs_b)
img_a_s = img_a_s[:, common_idxs, :, :]
img_b_s = img_b_s[:, common_idxs, :, :]
img_s = np.vstack([img_a_s, img_b_s])
# TODO: Triplet support
lons = lons[common_idxs]
lats = lats[common_idxs]
if ds_1 is not None:
ndb = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'temperature', timestamp, lons, lats, do_norm=True)
else:
ndb = get_profile(ds_0, 'temperature', lons, lats, do_norm=True)
if ndb is None:
continue
if ds_1 is not None:
ndf = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'rh', timestamp, lons, lats, do_norm=False)
else:
ndf = get_profile(ds_0, 'rh', lons, lats, do_norm=False)
if ndf is None:
continue
ndf /= 100.0
ndb = np.stack((ndb, ndf), axis=2)
#ndd = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'MSL pressure', timestamp, lons, lats, do_norm=False)
#ndd /= 1000.0
#nde = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'surface temperature', timestamp, lons, lats, do_norm=True)
# label/truth
# Level of best fit (LBF)
ndc = obs[common_idxs, 3]
# AMV Predicted
# ndc = obs[common_idxs, 4]
ndc /= 1000.0
nda = np.transpose(img_s, axes=[1, 2, 3, 0])
if TRIPLET or CONV3D:
nda_l = np.transpose(img_s_l, axes=[1, 2, 3, 0])
nda_r = np.transpose(img_s_r, axes=[1, 2, 3, 0])
if CONV3D:
nda = np.stack((nda_l, nda, nda_r), axis=4)
nda = np.transpose(nda, axes=[0, 1, 2, 4, 3])
else:
nda = np.concatenate([nda, nda_l, nda_r], axis=3)
images.append(nda)
vprof.append(ndb)
label.append(ndc)
# nds = np.stack([ndd, nde], axis=1)
nds = np.zeros((len(lons), 2))
sfc.append(nds)
if not CACHE_GFS:
subprocess.call(['rm', gfs_0, gfs_1])
if CACHE_DATA_IN_MEM:
self.in_mem_data_cache[key] = (nda, ndb, ndc, nds)
ds_0.close()
if ds_1 is not None:
ds_1.close()
images = np.concatenate(images)
label = np.concatenate(label)
label = np.reshape(label, (label.shape[0], 1))
vprof = np.concatenate(vprof)
sfc = np.concatenate(sfc)
return images, vprof, label, sfc
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function(self, input):
out = tf.numpy_function(self.get_in_mem_data_batch, [input], [tf.float32, tf.float64, tf.float64, tf.float64])
return out
def get_train_dataset(self, time_keys):
time_keys = list(time_keys)
dataset = tf.data.Dataset.from_tensor_slices(time_keys)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function, num_parallel_calls=8)
dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
dataset = dataset.prefetch(buffer_size=1)
self.train_dataset = dataset
def get_test_dataset(self, time_keys):
time_keys = list(time_keys)
dataset = tf.data.Dataset.from_tensor_slices(time_keys)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function, num_parallel_calls=8)
self.test_dataset = dataset
def setup_pipeline(self, matchup_dict, train_dict=None, valid_test_dict=None):
self.matchup_dict = matchup_dict
if train_dict is None:
if valid_test_dict is not None:
self.matchup_dict = valid_test_dict
valid_keys = list(valid_test_dict.keys())
self.get_test_dataset(valid_keys)
self.num_data_samples = get_num_samples(valid_test_dict, valid_keys)
print('num test samples: ', self.num_data_samples)
print('setup_pipeline: Done')
return
train_dict, valid_test_dict = split_matchup(matchup_dict, perc=0.10)
train_dict = shuffle_dict(train_dict)
train_keys = list(train_dict.keys())
self.get_train_dataset(train_keys)
self.num_data_samples = get_num_samples(train_dict, train_keys)
print('num data samples: ', self.num_data_samples)
print('BATCH SIZE: ', BATCH_SIZE)
valid_keys = list(valid_test_dict.keys())
self.get_test_dataset(valid_keys)
print('num test samples: ', get_num_samples(valid_test_dict, valid_keys))
print('setup_pipeline: Done')
def build_1d_cnn(self):
print('build_1d_cnn')
# padding = 'VALID'
padding = 'SAME'
# activation = tf.nn.relu
# activation = tf.nn.elu
activation = tf.nn.leaky_relu
num_filters = 6
conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1])
conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
print(conv)
num_filters *= 2
conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
print(conv)
num_filters *= 2
conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
print(conv)
num_filters *= 2
conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
print(conv)
flat = tf.keras.layers.Flatten()(conv)
print(flat)
return flat
def build_cnn(self):
print('build_cnn')
# padding = "VALID"
padding = "SAME"
# activation = tf.nn.relu
# activation = tf.nn.elu
activation = tf.nn.leaky_relu
momentum = 0.99
num_filters = 8
conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0])
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
flat = tf.keras.layers.Flatten()(conv)
return flat
def build_dnn(self, input_layer=None):
print('build fully connected layer')
drop_rate = 0.5
# activation = tf.nn.softmax
activation = tf.nn.sigmoid # For binary
momentum = 0.99
if input_layer is not None:
flat = input_layer
n_hidden = input_layer.shape[1]
else:
flat = self.X_img
n_hidden = self.X_img.shape[1]
fac = 1
fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5')
fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
fc = tf.keras.layers.BatchNormalization()(fc)
print(fc.shape)
logits = tf.keras.layers.Dense(NumLabels)(fc)
print(logits.shape)
self.logits = logits
def build_training(self):
self.loss = tf.keras.losses.BinaryCrossentropy # for two-class only
#self.loss = tf.keras.losses.SparseCategoricalCrossentropy() # For multi-class
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate = 0.0016
decay_rate = 0.95
steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch
# decay_steps = int(steps_per_epoch / 2)
decay_steps = 2 * steps_per_epoch
print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
if TRACK_MOVING_AVERAGE:
ema = tf.train.ExponentialMovingAverage(decay=0.999)
with tf.control_dependencies([optimizer]):
optimizer = ema.apply(self.model.trainable_variables)
self.optimizer = optimizer
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss')
def build_predict(self):
_, pred = tf.nn.top_k(self.logits)
self.pred_class = pred
if TRACK_MOVING_AVERAGE:
self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step)
self.variable_averages.apply(self.model.trainable_variables)
@tf.function
def train_step(self, mini_batch):
inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
labels = mini_batch[2]
with tf.GradientTape() as tape:
pred = self.model(inputs, training=True)
loss = self.loss(labels, pred)
total_loss = loss
if len(self.model.losses) > 0:
reg_loss = tf.math.add_n(self.model.losses)
total_loss = loss + reg_loss
gradients = tape.gradient(total_loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
self.train_loss(loss)
self.train_accuracy(labels, pred)
return loss
@tf.function
def test_step(self, mini_batch):
inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
labels = mini_batch[2]
pred = self.model(inputs, training=False)
t_loss = self.loss(labels, pred)
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
def predict(self, mini_batch):
inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
labels = mini_batch[2]
pred = self.model(inputs, training=False)
t_loss = self.loss(labels, pred)
def do_training(self, ckpt_dir=None):
if ckpt_dir is None:
if not os.path.exists(modeldir):
os.mkdir(modeldir)
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
else:
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
step = 0
total_time = 0
for epoch in range(NUM_EPOCHS):
self.train_loss.reset_states()
self.train_accuracy.reset_states()
t0 = datetime.datetime.now().timestamp()
proc_batch_cnt = 0
n_samples = 0
for abi, temp, lbfp, sfc in self.train_dataset:
trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
trn_ds = trn_ds.batch(BATCH_SIZE)
for mini_batch in trn_ds:
if self.learningRateSchedule is not None:
loss = self.train_step(mini_batch)
if (step % 100) == 0:
with self.writer_train.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
tf.summary.scalar('num_train_steps', step, step=step)
tf.summary.scalar('num_epochs', epoch, step=step)
self.test_loss.reset_states()
self.test_accuracy.reset_states()
for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
tst_ds = tst_ds.batch(BATCH_SIZE)
for mini_batch_test in tst_ds:
self.test_step(mini_batch_test)
with self.writer_valid.as_default():
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
tf.summary.scalar('num_train_steps', step, step=step)
tf.summary.scalar('num_epochs', epoch, step=step)
print('****** test loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
step += 1
print('train loss: ', loss.numpy())
proc_batch_cnt += 1
n_samples += abi.shape[0]
print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
t1 = datetime.datetime.now().timestamp()
print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
total_time += (t1-t0)
self.test_loss.reset_states()
self.test_accuracy.reset_states()
for abi, temp, lbfp, sfc in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
ds = ds.batch(BATCH_SIZE)
for mini_batch in ds:
self.test_step(mini_batch)
print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
ckpt_manager.save()
if self.DISK_CACHE and epoch == 0:
f = open(cachepath, 'wb')
pickle.dump(self.in_mem_data_cache, f)
f.close()
print('total time: ', total_time)
self.writer_train.close()
self.writer_valid.close()
def build_model(self):
flat = self.build_cnn()
flat_1d = self.build_1d_cnn()
# flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc])
flat = tf.keras.layers.concatenate([flat, flat_1d])
self.build_dnn(flat)
self.model = tf.keras.Model(self.inputs, self.logits)
def restore(self, ckpt_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.test_loss.reset_states()
self.test_accuracy.reset_states()
for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
ds = ds.batch(BATCH_SIZE)
for mini_batch_test in ds:
self.predict(mini_batch_test)
print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
def run(self, matchup_dict, train_dict=None, valid_dict=None):
with tf.device('/device:GPU:'+str(self.gpu_device)):
self.setup_pipeline(matchup_dict, train_dict=train_dict, valid_test_dict=valid_dict)
self.build_model()
self.build_training()
self.build_evaluation()
self.do_training()
def run_restore(self, matchup_dict, ckpt_dir):
self.setup_pipeline(None, None, matchup_dict)
self.build_model()
self.build_training()
self.build_evaluation()
self.restore(ckpt_dir)
if __name__ == "__main__":
nn = IcingIntensityNN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment