diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py
new file mode 100644
index 0000000000000000000000000000000000000000..98562ab7b4531acea81cc53e7ddc903d4b61fa1f
--- /dev/null
+++ b/modules/deeplearning/icing.py
@@ -0,0 +1,778 @@
+import tensorflow as tf
+from util.setup import logdir, modeldir, cachepath
+import subprocess
+
+import os, datetime
+import numpy as np
+import xarray as xr
+import pickle
+
+from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, \
+    split_matchup, shuffle_dict, get_interpolated_scalar, get_num_samples, get_time_tuple_utc, get_profile
+
+LOG_DEVICE_PLACEMENT = False
+
+CACHE_DATA_IN_MEM = True
+CACHE_GFS = True
+
+PROC_BATCH_SIZE = 60
+PROC_BATCH_BUFFER_SIZE = 50000
+NumLabels = 1
+BATCH_SIZE = 256
+NUM_EPOCHS = 200
+
+
+TRACK_MOVING_AVERAGE = False
+
+DAY_NIGHT = 'ANY'
+
+TRIPLET = False
+CONV3D = False
+
+abi_2km_channels = ['14', '08', '11', '13', '15', '16']
+# abi_2km_channels = ['08', '09', '10']
+abi_hkm_channels = []
+# abi_channels = abi_2km_channels + abi_hkm_channels
+abi_channels = abi_2km_channels
+
+abi_mean = {'08': 236.014, '14': 275.229, '02': 0.049, '11': 273.582, '13': 275.796, '15': 272.928, '16': 260.956, '09': 244.502, '10': 252.375}
+abi_std = {'08': 7.598, '14': 20.443, '02': 0.082, '11': 19.539, '13': 20.431, '15': 20.104, '16': 15.720, '09': 9.827, '10': 11.765}
+abi_valid_range = {'02': [0.001, 120], '08': [150, 350], '14': [150, 350], '11': [150, 350], '13': [150, 350], '15': [150, 350], '16': [150, 350], '09': [150, 350], '10': [150, 350]}
+abi_half_width = {'08': 12, '14': 12, '02': 48, '11': 12, '13': 12, '15': 12, '16': 12, '09': 12, '10': 12}
+#abi_half_width = {'08': 6, '14': 6, '02': 24, '11': 6, '13': 6, '15': 6, '16': 6, '09': 6, '10': 6}
+#abi_half_width = {'08': 3, '14': 3, '02': 12, '11': 3, '13': 3, '15': 3, '16': 3, '09': 3, '10': 3}
+abi_stride = {'08': 1, '14': 1, '02': 4, '11': 1, '13': 1, '15': 1, '16': 1, '09': 1, '10': 1}
+img_width = 24
+#img_width = 12
+#img_width = 6
+
+NUM_VERT_LEVELS = 26
+NUM_VERT_PARAMS = 2
+
+gfs_mean_temp = [225.481110,
+                 218.950729,
+                 215.830338,
+                 212.063187,
+                 209.348038,
+                 208.787033,
+                 213.728928,
+                 218.298264,
+                 223.061020,
+                 229.190445,
+                 236.095215,
+                 242.589493,
+                 248.333237,
+                 253.357071,
+                 257.768646,
+                 261.599396,
+                 264.793671,
+                 267.667603,
+                 270.408478,
+                 272.841919,
+                 274.929138,
+                 276.826294,
+                 277.786865,
+                 278.834198,
+                 279.980408,
+                 281.308380]
+gfs_mean_temp = np.array(gfs_mean_temp)
+gfs_mean_temp = np.reshape(gfs_mean_temp, (1, gfs_mean_temp.shape[0]))
+
+gfs_std_temp = [13.037852,
+                11.669035,
+                10.775956,
+                10.428216,
+                11.705231,
+                12.352798,
+                8.892235,
+                7.101064,
+                8.505628,
+                10.815929,
+                12.139559,
+                12.720000,
+                12.929382,
+                13.023590,
+                13.135534,
+                13.543551,
+                14.449997,
+                15.241049,
+                15.638563,
+                15.943666,
+                16.178715,
+                16.458992,
+                16.700863,
+                17.109579,
+                17.630177,
+                18.080544]
+gfs_std_temp = np.array(gfs_std_temp)
+gfs_std_temp = np.reshape(gfs_std_temp, (1, gfs_std_temp.shape[0]))
+
+mean_std_dict = {'temperature': (gfs_mean_temp, gfs_std_temp), 'surface temperature': (279.35, 22.81),
+                 'MSL pressure': (1010.64, 13.46), 'tropopause temperature': (208.17, 11.36), 'tropopause pressure': (219.62, 78.79)}
+
+valid_range_dict = {'temperature': (150, 350), 'surface temperature': (150, 350), 'MSL pressure': (800, 1050),
+                    'tropopause temperature': (150, 250), 'tropopause pressure': (100, 500)}
+
+
+def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True):
+    with tf.name_scope(block_name):
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(input)
+            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
+        else:
+            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+        fc_skip = fc
+
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(fc)
+        fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(fc)
+        fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(fc)
+        fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+
+        fc = fc + fc_skip
+        fc = tf.keras.layers.LeakyReLU()(fc)
+        print(fc.shape)
+
+    return fc
+
+
+class IcingIntensityNN:
+    
+    def __init__(self, gpu_device=0, datapath=None):
+        self.train_data = None
+        self.train_label = None
+        self.test_data = None
+        self.test_label = None
+        self.test_data_denorm = None
+        
+        self.train_dataset = None
+        self.inner_train_dataset = None
+        self.test_dataset = None
+        self.X_img = None
+        self.X_prof = None
+        self.X_u = None
+        self.X_v = None
+        self.X_sfc = None
+        self.inputs = []
+        self.y = None
+        self.handle = None
+        self.inner_handle = None
+        self.in_mem_batch = None
+        self.matchup_dict = None
+
+        self.logits = None
+
+        self.predict_data = None
+        self.predict_dataset = None
+        self.mean_list = None
+        self.std_list = None
+        
+        self.training_op = None
+        self.correct = None
+        self.accuracy = None
+        self.loss = None
+        self.pred_class = None
+        self.gpu_device = gpu_device
+        self.variable_averages = None
+
+        self.global_step = None
+
+        self.writer_train = None
+        self.writer_valid = None
+
+        self.OUT_OF_RANGE = False
+
+        self.abi = None
+        self.temp = None
+        self.wv = None
+        self.lbfp = None
+        self.sfc = None
+
+        self.in_mem_data_cache = {}
+
+        self.model = None
+        self.optimizer = None
+        self.train_loss = None
+        self.train_accuracy = None
+        self.test_loss = None
+        self.test_accuracy = None
+
+        self.learningRateSchedule = None
+        self.num_data_samples = None
+        self.initial_learning_rate = None
+
+        n_chans = len(abi_channels)
+        if TRIPLET:
+            n_chans *= 3
+        self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans))
+        self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS))
+        self.X_sfc = tf.keras.Input(shape=2)
+
+        self.inputs.append(self.X_img)
+        self.inputs.append(self.X_prof)
+        self.inputs.append(self.X_sfc)
+
+        self.DISK_CACHE = True
+
+        if datapath is not None:
+            self.DISK_CACHE = False
+            f = open(datapath, 'rb')
+            self.in_mem_data_cache = pickle.load(f)
+            f.close()
+
+        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
+
+        gpus = tf.config.experimental.list_physical_devices('GPU')
+        if gpus:
+            try:
+                # Currently, memory growth needs to be the same across GPUs
+                for gpu in gpus:
+                    tf.config.experimental.set_memory_growth(gpu, True)
+                logical_gpus = tf.config.experimental.list_logical_devices('GPU')
+                print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
+            except RuntimeError as e:
+                # Memory growth must be set before GPUs have been initialized
+                print(e)
+
+    def get_in_mem_data_batch(self, time_keys):
+        images = []
+        vprof = []
+        label = []
+        sfc = []
+
+        for key in time_keys:
+            if CACHE_DATA_IN_MEM:
+                tup = self.in_mem_data_cache.get(key)
+                if tup is not None:
+                    images.append(tup[0])
+                    vprof.append(tup[1])
+                    label.append(tup[2])
+                    sfc.append(tup[3])
+                    continue
+
+            obs = self.matchup_dict.get(key)
+            if obs is None:
+                print('no entry for: ', key)
+            timestamp = obs[0][0]
+            print('not found in cache, processing key: ', key, get_time_tuple_utc(timestamp)[0])
+
+            gfs_0, time_0, gfs_1, time_1 = get_bounding_gfs_files(timestamp)
+            if (gfs_0 is None) and (gfs_1 is None):
+                print('no GFS for: ', get_time_tuple_utc(timestamp)[0])
+                continue
+            try:
+                gfs_0 = convert_file(gfs_0)
+                if gfs_1 is not None:
+                    gfs_1 = convert_file(gfs_1)
+            except Exception as exc:
+                print(get_time_tuple_utc(timestamp)[0])
+                print(exc)
+                continue
+
+            ds_1 = None
+            try:
+                ds_0 = xr.open_dataset(gfs_0)
+                if gfs_1 is not None:
+                    ds_1 = xr.open_dataset(gfs_1)
+            except Exception as exc:
+                print(exc)
+                continue
+
+            lons = obs[:, 2]
+            lats = obs[:, 1]
+
+            half_width = [abi_half_width.get(ch) for ch in abi_2km_channels]
+            strides = [abi_stride.get(ch) for ch in abi_2km_channels]
+
+            img_a_s, img_a_s_l, img_a_s_r, idxs_a = get_images(lons, lats, timestamp, abi_2km_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
+            if idxs_a.size == 0:
+                print('no images for: ', timestamp)
+                continue
+
+            idxs_b = None
+            if len(abi_hkm_channels) > 0:
+                half_width = [abi_half_width.get(ch) for ch in abi_hkm_channels]
+                strides = [abi_stride.get(ch) for ch in abi_hkm_channels]
+
+                img_b_s, img_b_s_l, img_b_s_r, idxs_b = get_images(lons, lats, timestamp, abi_hkm_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
+                if idxs_b.size == 0:
+                    print('no hkm images for: ', timestamp)
+                    continue
+
+            if idxs_b is None:
+                common_idxs = idxs_a
+                img_a_s = img_a_s[:, common_idxs, :, :]
+                img_s = img_a_s
+                if TRIPLET:
+                    img_a_s_l = img_a_s_l[:, common_idxs, :, :]
+                    img_a_s_r = img_a_s_r[:, common_idxs, :, :]
+                    img_s_l = img_a_s_l
+                    img_s_r = img_a_s_r
+            else:
+                common_idxs = np.intersect1d(idxs_a, idxs_b)
+                img_a_s = img_a_s[:, common_idxs, :, :]
+                img_b_s = img_b_s[:, common_idxs, :, :]
+                img_s = np.vstack([img_a_s, img_b_s])
+                # TODO: Triplet support
+
+            lons = lons[common_idxs]
+            lats = lats[common_idxs]
+
+            if ds_1 is not None:
+                ndb = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'temperature', timestamp, lons, lats, do_norm=True)
+            else:
+                ndb = get_profile(ds_0, 'temperature', lons, lats, do_norm=True)
+            if ndb is None:
+                continue
+
+            if ds_1 is not None:
+                ndf = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'rh', timestamp, lons, lats, do_norm=False)
+            else:
+                ndf = get_profile(ds_0, 'rh', lons, lats, do_norm=False)
+            if ndf is None:
+                continue
+            ndf /= 100.0
+            ndb = np.stack((ndb, ndf), axis=2)
+
+            #ndd = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'MSL pressure', timestamp, lons, lats, do_norm=False)
+            #ndd /= 1000.0
+
+            #nde = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'surface temperature', timestamp, lons, lats, do_norm=True)
+
+            # label/truth
+            # Level of best fit (LBF)
+            ndc = obs[common_idxs, 3]
+            # AMV Predicted
+            # ndc = obs[common_idxs, 4]
+            ndc /= 1000.0
+
+            nda = np.transpose(img_s, axes=[1, 2, 3, 0])
+            if TRIPLET or CONV3D:
+                nda_l = np.transpose(img_s_l, axes=[1, 2, 3, 0])
+                nda_r = np.transpose(img_s_r, axes=[1, 2, 3, 0])
+                if CONV3D:
+                    nda = np.stack((nda_l, nda, nda_r), axis=4)
+                    nda = np.transpose(nda, axes=[0, 1, 2, 4, 3])
+                else:
+                    nda = np.concatenate([nda, nda_l, nda_r], axis=3)
+
+            images.append(nda)
+            vprof.append(ndb)
+            label.append(ndc)
+            # nds = np.stack([ndd, nde], axis=1)
+            nds = np.zeros((len(lons), 2))
+            sfc.append(nds)
+
+            if not CACHE_GFS:
+                subprocess.call(['rm', gfs_0, gfs_1])
+
+            if CACHE_DATA_IN_MEM:
+                self.in_mem_data_cache[key] = (nda, ndb, ndc, nds)
+
+            ds_0.close()
+            if ds_1 is not None:
+               ds_1.close()
+
+        images = np.concatenate(images)
+
+        label = np.concatenate(label)
+        label = np.reshape(label, (label.shape[0], 1))
+
+        vprof = np.concatenate(vprof)
+
+        sfc = np.concatenate(sfc)
+
+        return images, vprof, label, sfc
+
+    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
+    def data_function(self, input):
+        out = tf.numpy_function(self.get_in_mem_data_batch, [input], [tf.float32, tf.float64, tf.float64, tf.float64])
+        return out
+
+    def get_train_dataset(self, time_keys):
+        time_keys = list(time_keys)
+
+        dataset = tf.data.Dataset.from_tensor_slices(time_keys)
+        dataset = dataset.batch(PROC_BATCH_SIZE)
+        dataset = dataset.map(self.data_function, num_parallel_calls=8)
+        dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
+        dataset = dataset.prefetch(buffer_size=1)
+        self.train_dataset = dataset
+
+    def get_test_dataset(self, time_keys):
+        time_keys = list(time_keys)
+
+        dataset = tf.data.Dataset.from_tensor_slices(time_keys)
+        dataset = dataset.batch(PROC_BATCH_SIZE)
+        dataset = dataset.map(self.data_function, num_parallel_calls=8)
+        self.test_dataset = dataset
+
+    def setup_pipeline(self, matchup_dict, train_dict=None, valid_test_dict=None):
+        self.matchup_dict = matchup_dict
+
+        if train_dict is None:
+            if valid_test_dict is not None:
+                self.matchup_dict = valid_test_dict
+                valid_keys = list(valid_test_dict.keys())
+                self.get_test_dataset(valid_keys)
+                self.num_data_samples = get_num_samples(valid_test_dict, valid_keys)
+                print('num test samples: ', self.num_data_samples)
+                print('setup_pipeline: Done')
+                return
+
+            train_dict, valid_test_dict = split_matchup(matchup_dict, perc=0.10)
+
+        train_dict = shuffle_dict(train_dict)
+        train_keys = list(train_dict.keys())
+
+        self.get_train_dataset(train_keys)
+
+        self.num_data_samples = get_num_samples(train_dict, train_keys)
+        print('num data samples: ', self.num_data_samples)
+        print('BATCH SIZE: ', BATCH_SIZE)
+
+        valid_keys = list(valid_test_dict.keys())
+        self.get_test_dataset(valid_keys)
+        print('num test samples: ', get_num_samples(valid_test_dict, valid_keys))
+
+        print('setup_pipeline: Done')
+
+    def build_1d_cnn(self):
+        print('build_1d_cnn')
+        # padding = 'VALID'
+        padding = 'SAME'
+
+        # activation = tf.nn.relu
+        # activation = tf.nn.elu
+        activation = tf.nn.leaky_relu
+
+        num_filters = 6
+
+        conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1])
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        flat = tf.keras.layers.Flatten()(conv)
+        print(flat)
+
+        return flat
+
+    def build_cnn(self):
+        print('build_cnn')
+        # padding = "VALID"
+        padding = "SAME"
+
+        # activation = tf.nn.relu
+        # activation = tf.nn.elu
+        activation = tf.nn.leaky_relu
+        momentum = 0.99
+
+        num_filters = 8
+
+        conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0])
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        flat = tf.keras.layers.Flatten()(conv)
+
+        return flat
+
+    def build_dnn(self, input_layer=None):
+        print('build fully connected layer')
+        drop_rate = 0.5
+
+        # activation = tf.nn.softmax
+        activation = tf.nn.sigmoid  # For binary
+        momentum = 0.99
+        
+        if input_layer is not None:
+            flat = input_layer
+            n_hidden = input_layer.shape[1]
+        else:
+            flat = self.X_img
+            n_hidden = self.X_img.shape[1]
+
+        fac = 1
+
+        fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1')
+
+        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2')
+
+        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3')
+
+        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4')
+
+        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5')
+
+        fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
+        fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+
+        logits = tf.keras.layers.Dense(NumLabels)(fc)
+        print(logits.shape)
+        
+        self.logits = logits
+
+    def build_training(self):
+        self.loss = tf.keras.losses.BinaryCrossentropy  # for two-class only
+        #self.loss = tf.keras.losses.SparseCategoricalCrossentropy()  # For multi-class
+
+        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
+        initial_learning_rate = 0.0016
+        decay_rate = 0.95
+        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
+        # decay_steps = int(steps_per_epoch / 2)
+        decay_steps = 2 * steps_per_epoch
+        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
+
+        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
+
+        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
+
+        if TRACK_MOVING_AVERAGE:
+            ema = tf.train.ExponentialMovingAverage(decay=0.999)
+
+            with tf.control_dependencies([optimizer]):
+                optimizer = ema.apply(self.model.trainable_variables)
+
+        self.optimizer = optimizer
+        self.initial_learning_rate = initial_learning_rate
+
+    def build_evaluation(self):
+        self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
+        self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
+        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
+        self.test_loss = tf.keras.metrics.Mean(name='test_loss')
+
+    def build_predict(self):
+        _, pred = tf.nn.top_k(self.logits)
+        self.pred_class = pred
+
+        if TRACK_MOVING_AVERAGE:
+            self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step)
+            self.variable_averages.apply(self.model.trainable_variables)
+
+    @tf.function
+    def train_step(self, mini_batch):
+        inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
+        labels = mini_batch[2]
+        with tf.GradientTape() as tape:
+            pred = self.model(inputs, training=True)
+            loss = self.loss(labels, pred)
+            total_loss = loss
+            if len(self.model.losses) > 0:
+                reg_loss = tf.math.add_n(self.model.losses)
+                total_loss = loss + reg_loss
+        gradients = tape.gradient(total_loss, self.model.trainable_variables)
+        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
+
+        self.train_loss(loss)
+        self.train_accuracy(labels, pred)
+
+        return loss
+
+    @tf.function
+    def test_step(self, mini_batch):
+        inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
+        labels = mini_batch[2]
+        pred = self.model(inputs, training=False)
+        t_loss = self.loss(labels, pred)
+
+        self.test_loss(t_loss)
+        self.test_accuracy(labels, pred)
+
+    def predict(self, mini_batch):
+        inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
+        labels = mini_batch[2]
+        pred = self.model(inputs, training=False)
+        t_loss = self.loss(labels, pred)
+
+    def do_training(self, ckpt_dir=None):
+
+        if ckpt_dir is None:
+            if not os.path.exists(modeldir):
+                os.mkdir(modeldir)
+            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
+            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
+        else:
+            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
+            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
+
+        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
+        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
+
+        step = 0
+        total_time = 0
+
+        for epoch in range(NUM_EPOCHS):
+            self.train_loss.reset_states()
+            self.train_accuracy.reset_states()
+
+            t0 = datetime.datetime.now().timestamp()
+
+            proc_batch_cnt = 0
+            n_samples = 0
+
+            for abi, temp, lbfp, sfc in self.train_dataset:
+                trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
+                trn_ds = trn_ds.batch(BATCH_SIZE)
+                for mini_batch in trn_ds:
+                    if self.learningRateSchedule is not None:
+                        loss = self.train_step(mini_batch)
+
+                    if (step % 100) == 0:
+
+                        with self.writer_train.as_default():
+                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
+                            tf.summary.scalar('num_train_steps', step, step=step)
+                            tf.summary.scalar('num_epochs', epoch, step=step)
+
+                        self.test_loss.reset_states()
+                        self.test_accuracy.reset_states()
+
+                        for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
+                            tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
+                            tst_ds = tst_ds.batch(BATCH_SIZE)
+                            for mini_batch_test in tst_ds:
+                                self.test_step(mini_batch_test)
+
+                        with self.writer_valid.as_default():
+                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
+                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
+                            tf.summary.scalar('num_train_steps', step, step=step)
+                            tf.summary.scalar('num_epochs', epoch, step=step)
+
+                        print('****** test loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
+
+                    step += 1
+                    print('train loss: ', loss.numpy())
+
+                proc_batch_cnt += 1
+                n_samples += abi.shape[0]
+                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
+
+            t1 = datetime.datetime.now().timestamp()
+            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
+            total_time += (t1-t0)
+
+            self.test_loss.reset_states()
+            self.test_accuracy.reset_states()
+            for abi, temp, lbfp, sfc in self.test_dataset:
+                ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
+                ds = ds.batch(BATCH_SIZE)
+                for mini_batch in ds:
+                    self.test_step(mini_batch)
+
+            print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
+            ckpt_manager.save()
+
+            if self.DISK_CACHE and epoch == 0:
+                f = open(cachepath, 'wb')
+                pickle.dump(self.in_mem_data_cache, f)
+                f.close()
+
+        print('total time: ', total_time)
+        self.writer_train.close()
+        self.writer_valid.close()
+
+    def build_model(self):
+        flat = self.build_cnn()
+        flat_1d = self.build_1d_cnn()
+        # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc])
+        flat = tf.keras.layers.concatenate([flat, flat_1d])
+        self.build_dnn(flat)
+        self.model = tf.keras.Model(self.inputs, self.logits)
+
+    def restore(self, ckpt_dir):
+
+        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
+        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
+
+        ckpt.restore(ckpt_manager.latest_checkpoint)
+
+        self.test_loss.reset_states()
+        self.test_accuracy.reset_states()
+
+        for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
+            ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
+            ds = ds.batch(BATCH_SIZE)
+            for mini_batch_test in ds:
+                self.predict(mini_batch_test)
+        print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
+
+    def run(self, matchup_dict, train_dict=None, valid_dict=None):
+        with tf.device('/device:GPU:'+str(self.gpu_device)):
+            self.setup_pipeline(matchup_dict, train_dict=train_dict, valid_test_dict=valid_dict)
+            self.build_model()
+            self.build_training()
+            self.build_evaluation()
+            self.do_training()
+
+    def run_restore(self, matchup_dict, ckpt_dir):
+        self.setup_pipeline(None, None, matchup_dict)
+        self.build_model()
+        self.build_training()
+        self.build_evaluation()
+        self.restore(ckpt_dir)
+
+
+if __name__ == "__main__":
+    nn = IcingIntensityNN()
+    nn.run('matchup_filename')