diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py new file mode 100644 index 0000000000000000000000000000000000000000..98562ab7b4531acea81cc53e7ddc903d4b61fa1f --- /dev/null +++ b/modules/deeplearning/icing.py @@ -0,0 +1,778 @@ +import tensorflow as tf +from util.setup import logdir, modeldir, cachepath +import subprocess + +import os, datetime +import numpy as np +import xarray as xr +import pickle + +from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, \ + split_matchup, shuffle_dict, get_interpolated_scalar, get_num_samples, get_time_tuple_utc, get_profile + +LOG_DEVICE_PLACEMENT = False + +CACHE_DATA_IN_MEM = True +CACHE_GFS = True + +PROC_BATCH_SIZE = 60 +PROC_BATCH_BUFFER_SIZE = 50000 +NumLabels = 1 +BATCH_SIZE = 256 +NUM_EPOCHS = 200 + + +TRACK_MOVING_AVERAGE = False + +DAY_NIGHT = 'ANY' + +TRIPLET = False +CONV3D = False + +abi_2km_channels = ['14', '08', '11', '13', '15', '16'] +# abi_2km_channels = ['08', '09', '10'] +abi_hkm_channels = [] +# abi_channels = abi_2km_channels + abi_hkm_channels +abi_channels = abi_2km_channels + +abi_mean = {'08': 236.014, '14': 275.229, '02': 0.049, '11': 273.582, '13': 275.796, '15': 272.928, '16': 260.956, '09': 244.502, '10': 252.375} +abi_std = {'08': 7.598, '14': 20.443, '02': 0.082, '11': 19.539, '13': 20.431, '15': 20.104, '16': 15.720, '09': 9.827, '10': 11.765} +abi_valid_range = {'02': [0.001, 120], '08': [150, 350], '14': [150, 350], '11': [150, 350], '13': [150, 350], '15': [150, 350], '16': [150, 350], '09': [150, 350], '10': [150, 350]} +abi_half_width = {'08': 12, '14': 12, '02': 48, '11': 12, '13': 12, '15': 12, '16': 12, '09': 12, '10': 12} +#abi_half_width = {'08': 6, '14': 6, '02': 24, '11': 6, '13': 6, '15': 6, '16': 6, '09': 6, '10': 6} +#abi_half_width = {'08': 3, '14': 3, '02': 12, '11': 3, '13': 3, '15': 3, '16': 3, '09': 3, '10': 3} +abi_stride = {'08': 1, '14': 1, '02': 4, '11': 1, '13': 1, '15': 1, '16': 1, '09': 1, '10': 1} +img_width = 24 +#img_width = 12 +#img_width = 6 + +NUM_VERT_LEVELS = 26 +NUM_VERT_PARAMS = 2 + +gfs_mean_temp = [225.481110, + 218.950729, + 215.830338, + 212.063187, + 209.348038, + 208.787033, + 213.728928, + 218.298264, + 223.061020, + 229.190445, + 236.095215, + 242.589493, + 248.333237, + 253.357071, + 257.768646, + 261.599396, + 264.793671, + 267.667603, + 270.408478, + 272.841919, + 274.929138, + 276.826294, + 277.786865, + 278.834198, + 279.980408, + 281.308380] +gfs_mean_temp = np.array(gfs_mean_temp) +gfs_mean_temp = np.reshape(gfs_mean_temp, (1, gfs_mean_temp.shape[0])) + +gfs_std_temp = [13.037852, + 11.669035, + 10.775956, + 10.428216, + 11.705231, + 12.352798, + 8.892235, + 7.101064, + 8.505628, + 10.815929, + 12.139559, + 12.720000, + 12.929382, + 13.023590, + 13.135534, + 13.543551, + 14.449997, + 15.241049, + 15.638563, + 15.943666, + 16.178715, + 16.458992, + 16.700863, + 17.109579, + 17.630177, + 18.080544] +gfs_std_temp = np.array(gfs_std_temp) +gfs_std_temp = np.reshape(gfs_std_temp, (1, gfs_std_temp.shape[0])) + +mean_std_dict = {'temperature': (gfs_mean_temp, gfs_std_temp), 'surface temperature': (279.35, 22.81), + 'MSL pressure': (1010.64, 13.46), 'tropopause temperature': (208.17, 11.36), 'tropopause pressure': (219.62, 78.79)} + +valid_range_dict = {'temperature': (150, 350), 'surface temperature': (150, 350), 'MSL pressure': (800, 1050), + 'tropopause temperature': (150, 250), 'tropopause pressure': (100, 500)} + + +def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): + with tf.name_scope(block_name): + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(input) + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) + else: + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + fc_skip = fc + + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(fc) + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(fc) + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(fc) + fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + + fc = fc + fc_skip + fc = tf.keras.layers.LeakyReLU()(fc) + print(fc.shape) + + return fc + + +class IcingIntensityNN: + + def __init__(self, gpu_device=0, datapath=None): + self.train_data = None + self.train_label = None + self.test_data = None + self.test_label = None + self.test_data_denorm = None + + self.train_dataset = None + self.inner_train_dataset = None + self.test_dataset = None + self.X_img = None + self.X_prof = None + self.X_u = None + self.X_v = None + self.X_sfc = None + self.inputs = [] + self.y = None + self.handle = None + self.inner_handle = None + self.in_mem_batch = None + self.matchup_dict = None + + self.logits = None + + self.predict_data = None + self.predict_dataset = None + self.mean_list = None + self.std_list = None + + self.training_op = None + self.correct = None + self.accuracy = None + self.loss = None + self.pred_class = None + self.gpu_device = gpu_device + self.variable_averages = None + + self.global_step = None + + self.writer_train = None + self.writer_valid = None + + self.OUT_OF_RANGE = False + + self.abi = None + self.temp = None + self.wv = None + self.lbfp = None + self.sfc = None + + self.in_mem_data_cache = {} + + self.model = None + self.optimizer = None + self.train_loss = None + self.train_accuracy = None + self.test_loss = None + self.test_accuracy = None + + self.learningRateSchedule = None + self.num_data_samples = None + self.initial_learning_rate = None + + n_chans = len(abi_channels) + if TRIPLET: + n_chans *= 3 + self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) + self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS)) + self.X_sfc = tf.keras.Input(shape=2) + + self.inputs.append(self.X_img) + self.inputs.append(self.X_prof) + self.inputs.append(self.X_sfc) + + self.DISK_CACHE = True + + if datapath is not None: + self.DISK_CACHE = False + f = open(datapath, 'rb') + self.in_mem_data_cache = pickle.load(f) + f.close() + + tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) + + gpus = tf.config.experimental.list_physical_devices('GPU') + if gpus: + try: + # Currently, memory growth needs to be the same across GPUs + for gpu in gpus: + tf.config.experimental.set_memory_growth(gpu, True) + logical_gpus = tf.config.experimental.list_logical_devices('GPU') + print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") + except RuntimeError as e: + # Memory growth must be set before GPUs have been initialized + print(e) + + def get_in_mem_data_batch(self, time_keys): + images = [] + vprof = [] + label = [] + sfc = [] + + for key in time_keys: + if CACHE_DATA_IN_MEM: + tup = self.in_mem_data_cache.get(key) + if tup is not None: + images.append(tup[0]) + vprof.append(tup[1]) + label.append(tup[2]) + sfc.append(tup[3]) + continue + + obs = self.matchup_dict.get(key) + if obs is None: + print('no entry for: ', key) + timestamp = obs[0][0] + print('not found in cache, processing key: ', key, get_time_tuple_utc(timestamp)[0]) + + gfs_0, time_0, gfs_1, time_1 = get_bounding_gfs_files(timestamp) + if (gfs_0 is None) and (gfs_1 is None): + print('no GFS for: ', get_time_tuple_utc(timestamp)[0]) + continue + try: + gfs_0 = convert_file(gfs_0) + if gfs_1 is not None: + gfs_1 = convert_file(gfs_1) + except Exception as exc: + print(get_time_tuple_utc(timestamp)[0]) + print(exc) + continue + + ds_1 = None + try: + ds_0 = xr.open_dataset(gfs_0) + if gfs_1 is not None: + ds_1 = xr.open_dataset(gfs_1) + except Exception as exc: + print(exc) + continue + + lons = obs[:, 2] + lats = obs[:, 1] + + half_width = [abi_half_width.get(ch) for ch in abi_2km_channels] + strides = [abi_stride.get(ch) for ch in abi_2km_channels] + + img_a_s, img_a_s_l, img_a_s_r, idxs_a = get_images(lons, lats, timestamp, abi_2km_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT) + if idxs_a.size == 0: + print('no images for: ', timestamp) + continue + + idxs_b = None + if len(abi_hkm_channels) > 0: + half_width = [abi_half_width.get(ch) for ch in abi_hkm_channels] + strides = [abi_stride.get(ch) for ch in abi_hkm_channels] + + img_b_s, img_b_s_l, img_b_s_r, idxs_b = get_images(lons, lats, timestamp, abi_hkm_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT) + if idxs_b.size == 0: + print('no hkm images for: ', timestamp) + continue + + if idxs_b is None: + common_idxs = idxs_a + img_a_s = img_a_s[:, common_idxs, :, :] + img_s = img_a_s + if TRIPLET: + img_a_s_l = img_a_s_l[:, common_idxs, :, :] + img_a_s_r = img_a_s_r[:, common_idxs, :, :] + img_s_l = img_a_s_l + img_s_r = img_a_s_r + else: + common_idxs = np.intersect1d(idxs_a, idxs_b) + img_a_s = img_a_s[:, common_idxs, :, :] + img_b_s = img_b_s[:, common_idxs, :, :] + img_s = np.vstack([img_a_s, img_b_s]) + # TODO: Triplet support + + lons = lons[common_idxs] + lats = lats[common_idxs] + + if ds_1 is not None: + ndb = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'temperature', timestamp, lons, lats, do_norm=True) + else: + ndb = get_profile(ds_0, 'temperature', lons, lats, do_norm=True) + if ndb is None: + continue + + if ds_1 is not None: + ndf = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'rh', timestamp, lons, lats, do_norm=False) + else: + ndf = get_profile(ds_0, 'rh', lons, lats, do_norm=False) + if ndf is None: + continue + ndf /= 100.0 + ndb = np.stack((ndb, ndf), axis=2) + + #ndd = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'MSL pressure', timestamp, lons, lats, do_norm=False) + #ndd /= 1000.0 + + #nde = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'surface temperature', timestamp, lons, lats, do_norm=True) + + # label/truth + # Level of best fit (LBF) + ndc = obs[common_idxs, 3] + # AMV Predicted + # ndc = obs[common_idxs, 4] + ndc /= 1000.0 + + nda = np.transpose(img_s, axes=[1, 2, 3, 0]) + if TRIPLET or CONV3D: + nda_l = np.transpose(img_s_l, axes=[1, 2, 3, 0]) + nda_r = np.transpose(img_s_r, axes=[1, 2, 3, 0]) + if CONV3D: + nda = np.stack((nda_l, nda, nda_r), axis=4) + nda = np.transpose(nda, axes=[0, 1, 2, 4, 3]) + else: + nda = np.concatenate([nda, nda_l, nda_r], axis=3) + + images.append(nda) + vprof.append(ndb) + label.append(ndc) + # nds = np.stack([ndd, nde], axis=1) + nds = np.zeros((len(lons), 2)) + sfc.append(nds) + + if not CACHE_GFS: + subprocess.call(['rm', gfs_0, gfs_1]) + + if CACHE_DATA_IN_MEM: + self.in_mem_data_cache[key] = (nda, ndb, ndc, nds) + + ds_0.close() + if ds_1 is not None: + ds_1.close() + + images = np.concatenate(images) + + label = np.concatenate(label) + label = np.reshape(label, (label.shape[0], 1)) + + vprof = np.concatenate(vprof) + + sfc = np.concatenate(sfc) + + return images, vprof, label, sfc + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function(self, input): + out = tf.numpy_function(self.get_in_mem_data_batch, [input], [tf.float32, tf.float64, tf.float64, tf.float64]) + return out + + def get_train_dataset(self, time_keys): + time_keys = list(time_keys) + + dataset = tf.data.Dataset.from_tensor_slices(time_keys) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=8) + dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.prefetch(buffer_size=1) + self.train_dataset = dataset + + def get_test_dataset(self, time_keys): + time_keys = list(time_keys) + + dataset = tf.data.Dataset.from_tensor_slices(time_keys) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=8) + self.test_dataset = dataset + + def setup_pipeline(self, matchup_dict, train_dict=None, valid_test_dict=None): + self.matchup_dict = matchup_dict + + if train_dict is None: + if valid_test_dict is not None: + self.matchup_dict = valid_test_dict + valid_keys = list(valid_test_dict.keys()) + self.get_test_dataset(valid_keys) + self.num_data_samples = get_num_samples(valid_test_dict, valid_keys) + print('num test samples: ', self.num_data_samples) + print('setup_pipeline: Done') + return + + train_dict, valid_test_dict = split_matchup(matchup_dict, perc=0.10) + + train_dict = shuffle_dict(train_dict) + train_keys = list(train_dict.keys()) + + self.get_train_dataset(train_keys) + + self.num_data_samples = get_num_samples(train_dict, train_keys) + print('num data samples: ', self.num_data_samples) + print('BATCH SIZE: ', BATCH_SIZE) + + valid_keys = list(valid_test_dict.keys()) + self.get_test_dataset(valid_keys) + print('num test samples: ', get_num_samples(valid_test_dict, valid_keys)) + + print('setup_pipeline: Done') + + def build_1d_cnn(self): + print('build_1d_cnn') + # padding = 'VALID' + padding = 'SAME' + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.leaky_relu + + num_filters = 6 + + conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1]) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + num_filters *= 2 + conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + num_filters *= 2 + conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + num_filters *= 2 + conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + flat = tf.keras.layers.Flatten()(conv) + print(flat) + + return flat + + def build_cnn(self): + print('build_cnn') + # padding = "VALID" + padding = "SAME" + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.leaky_relu + momentum = 0.99 + + num_filters = 8 + + conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0]) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + flat = tf.keras.layers.Flatten()(conv) + + return flat + + def build_dnn(self, input_layer=None): + print('build fully connected layer') + drop_rate = 0.5 + + # activation = tf.nn.softmax + activation = tf.nn.sigmoid # For binary + momentum = 0.99 + + if input_layer is not None: + flat = input_layer + n_hidden = input_layer.shape[1] + else: + flat = self.X_img + n_hidden = self.X_img.shape[1] + + fac = 1 + + fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1') + + fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2') + + fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3') + + fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4') + + fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5') + + fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + + logits = tf.keras.layers.Dense(NumLabels)(fc) + print(logits.shape) + + self.logits = logits + + def build_training(self): + self.loss = tf.keras.losses.BinaryCrossentropy # for two-class only + #self.loss = tf.keras.losses.SparseCategoricalCrossentropy() # For multi-class + + # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) + initial_learning_rate = 0.0016 + decay_rate = 0.95 + steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch + # decay_steps = int(steps_per_epoch / 2) + decay_steps = 2 * steps_per_epoch + print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) + + self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) + + optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) + + if TRACK_MOVING_AVERAGE: + ema = tf.train.ExponentialMovingAverage(decay=0.999) + + with tf.control_dependencies([optimizer]): + optimizer = ema.apply(self.model.trainable_variables) + + self.optimizer = optimizer + self.initial_learning_rate = initial_learning_rate + + def build_evaluation(self): + self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') + self.train_loss = tf.keras.metrics.Mean(name='train_loss') + self.test_loss = tf.keras.metrics.Mean(name='test_loss') + + def build_predict(self): + _, pred = tf.nn.top_k(self.logits) + self.pred_class = pred + + if TRACK_MOVING_AVERAGE: + self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step) + self.variable_averages.apply(self.model.trainable_variables) + + @tf.function + def train_step(self, mini_batch): + inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] + labels = mini_batch[2] + with tf.GradientTape() as tape: + pred = self.model(inputs, training=True) + loss = self.loss(labels, pred) + total_loss = loss + if len(self.model.losses) > 0: + reg_loss = tf.math.add_n(self.model.losses) + total_loss = loss + reg_loss + gradients = tape.gradient(total_loss, self.model.trainable_variables) + self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) + + self.train_loss(loss) + self.train_accuracy(labels, pred) + + return loss + + @tf.function + def test_step(self, mini_batch): + inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] + labels = mini_batch[2] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + + def predict(self, mini_batch): + inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] + labels = mini_batch[2] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + def do_training(self, ckpt_dir=None): + + if ckpt_dir is None: + if not os.path.exists(modeldir): + os.mkdir(modeldir) + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) + else: + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + + self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) + self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) + + step = 0 + total_time = 0 + + for epoch in range(NUM_EPOCHS): + self.train_loss.reset_states() + self.train_accuracy.reset_states() + + t0 = datetime.datetime.now().timestamp() + + proc_batch_cnt = 0 + n_samples = 0 + + for abi, temp, lbfp, sfc in self.train_dataset: + trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc)) + trn_ds = trn_ds.batch(BATCH_SIZE) + for mini_batch in trn_ds: + if self.learningRateSchedule is not None: + loss = self.train_step(mini_batch) + + if (step % 100) == 0: + + with self.writer_train.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + self.test_loss.reset_states() + self.test_accuracy.reset_states() + + for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset: + tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst)) + tst_ds = tst_ds.batch(BATCH_SIZE) + for mini_batch_test in tst_ds: + self.test_step(mini_batch_test) + + with self.writer_valid.as_default(): + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + print('****** test loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) + + step += 1 + print('train loss: ', loss.numpy()) + + proc_batch_cnt += 1 + n_samples += abi.shape[0] + print('proc_batch_cnt: ', proc_batch_cnt, n_samples) + + t1 = datetime.datetime.now().timestamp() + print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) + total_time += (t1-t0) + + self.test_loss.reset_states() + self.test_accuracy.reset_states() + for abi, temp, lbfp, sfc in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc)) + ds = ds.batch(BATCH_SIZE) + for mini_batch in ds: + self.test_step(mini_batch) + + print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) + ckpt_manager.save() + + if self.DISK_CACHE and epoch == 0: + f = open(cachepath, 'wb') + pickle.dump(self.in_mem_data_cache, f) + f.close() + + print('total time: ', total_time) + self.writer_train.close() + self.writer_valid.close() + + def build_model(self): + flat = self.build_cnn() + flat_1d = self.build_1d_cnn() + # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc]) + flat = tf.keras.layers.concatenate([flat, flat_1d]) + self.build_dnn(flat) + self.model = tf.keras.Model(self.inputs, self.logits) + + def restore(self, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.test_loss.reset_states() + self.test_accuracy.reset_states() + + for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst)) + ds = ds.batch(BATCH_SIZE) + for mini_batch_test in ds: + self.predict(mini_batch_test) + print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) + + def run(self, matchup_dict, train_dict=None, valid_dict=None): + with tf.device('/device:GPU:'+str(self.gpu_device)): + self.setup_pipeline(matchup_dict, train_dict=train_dict, valid_test_dict=valid_dict) + self.build_model() + self.build_training() + self.build_evaluation() + self.do_training() + + def run_restore(self, matchup_dict, ckpt_dir): + self.setup_pipeline(None, None, matchup_dict) + self.build_model() + self.build_training() + self.build_evaluation() + self.restore(ckpt_dir) + + +if __name__ == "__main__": + nn = IcingIntensityNN() + nn.run('matchup_filename')