Skip to content
Snippets Groups Projects
Commit df612ef5 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent ccca588e
Branches
No related tags found
No related merge requests found
......@@ -61,8 +61,10 @@ label_param = label_params[label_idx]
x_70 = np.arange(70)
y_70 = np.arange(70)
x_70_2 = x_70[3:67:2]
y_70_2 = y_70[3:67:2]
#x_70_2 = x_70[3:67:2]
#y_70_2 = y_70[3:67:2]
x_70_2 = x_70[2:68:2]
y_70_2 = y_70[2:68:2]
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME'):
......@@ -177,7 +179,7 @@ class ESPCN:
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans))
# self.X_img = tf.keras.Input(shape=(34, 34, self.n_chans))
# self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans))
self.inputs.append(self.X_img)
......@@ -204,8 +206,8 @@ class ESPCN:
data = np.expand_dims(data, axis=3)
# label = label[:, label_idx, :, :]
# label = label[:, label_idx, 3:67:2, 3:67:2]
label = label[:, label_idx, 3:67, 3:67]
label = label[:, label_idx, 3:67:2, 3:67:2]
# label = label[:, label_idx, 3:67, 3:67]
label = np.expand_dims(label, axis=3)
data = data.astype(np.float32)
......@@ -349,8 +351,8 @@ class ESPCN:
conv = input_2d
print('input: ', conv.shape)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
# conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID')(input_2d)
# conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID')(input_2d)
print(conv.shape)
if NOISE_TRAINING:
......@@ -369,11 +371,10 @@ class ESPCN:
conv = conv + conv_b
print(conv.shape)
conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
# conv = tf.keras.layers.Conv2D((factor ** 2), 3, padding='same')(conv)
# conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
print(conv.shape)
conv = tf.nn.depth_to_space(conv, factor)
#conv = tf.nn.depth_to_space(conv, factor)
print(conv.shape)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment