diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 8e41c165569c4a3a54710b60540d2006346bf762..362f4483a65dbc003230c24efc49e143b0ec971f 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -61,8 +61,10 @@ label_param = label_params[label_idx] x_70 = np.arange(70) y_70 = np.arange(70) -x_70_2 = x_70[3:67:2] -y_70_2 = y_70[3:67:2] +#x_70_2 = x_70[3:67:2] +#y_70_2 = y_70[3:67:2] +x_70_2 = x_70[2:68:2] +y_70_2 = y_70[2:68:2] def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME'): @@ -177,7 +179,7 @@ class ESPCN: self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) - self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) + # self.X_img = tf.keras.Input(shape=(34, 34, self.n_chans)) # self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans)) self.inputs.append(self.X_img) @@ -204,8 +206,8 @@ class ESPCN: data = np.expand_dims(data, axis=3) # label = label[:, label_idx, :, :] - # label = label[:, label_idx, 3:67:2, 3:67:2] - label = label[:, label_idx, 3:67, 3:67] + label = label[:, label_idx, 3:67:2, 3:67:2] + # label = label[:, label_idx, 3:67, 3:67] label = np.expand_dims(label, axis=3) data = data.astype(np.float32) @@ -349,8 +351,8 @@ class ESPCN: conv = input_2d print('input: ', conv.shape) - conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d) - # conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID')(input_2d) + # conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d) + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID')(input_2d) print(conv.shape) if NOISE_TRAINING: @@ -369,11 +371,10 @@ class ESPCN: conv = conv + conv_b print(conv.shape) - conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv) - # conv = tf.keras.layers.Conv2D((factor ** 2), 3, padding='same')(conv) + # conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv) print(conv.shape) - conv = tf.nn.depth_to_space(conv, factor) + #conv = tf.nn.depth_to_space(conv, factor) print(conv.shape) self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)