Skip to content
Snippets Groups Projects
Commit da21a27f authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 72297c7f
Branches
No related tags found
No related merge requests found
......@@ -682,37 +682,52 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
h5f = h5py.File(in_file, 'r')
refl = get_grid_values_all(h5f, 'super/refl_0_65um')
refl = np.where(np.isnan(refl), 0, refl)
refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
LEN_Y, LEN_X = refl.shape
nn = SRCNN(LEN_Y=LEN_Y, LEN_X=LEN_X)
refl = refl[nn.slc_y, nn.slc_x]
bt = get_grid_values_all(h5f, 'orig/temp_11_0um')
bt = np.where(np.isnan(bt), 0, bt)
bt = bt[nn.slc_y_m, nn.slc_x_m]
bt = nn.upsample(bt)
bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
refl = get_grid_values_all(h5f, 'super/refl_0_65um')
refl = np.where(np.isnan(refl), 0, refl)
refl = np.expand_dims(refl, axis=0)
refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl)
refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
refl_lo = np.squeeze(refl_lo)
refl_hi = np.squeeze(refl_hi)
refl_avg = np.squeeze(refl_avg)
cp = get_grid_values_all(h5f, 'orig/'+label_param)
cp = np.where(np.isnan(cp), 0, cp)
data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2)
# refl = get_grid_values_all(h5f, 'super/refl_0_65um')
# refl = np.where(np.isnan(refl), 0, refl)
# refl = np.expand_dims(refl, axis=0)
# refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl)
# refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
# refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
# refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
# refl_lo = np.squeeze(refl_lo)
# refl_hi = np.squeeze(refl_hi)
# refl_avg = np.squeeze(refl_avg)
cld_opd = get_grid_values_all(h5f, 'orig/'+label_param)
cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd)
cld_opd = cld_opd[:, nn.slc_y_2, nn.slc_x_2]
cld_opd = nn.upsample(cld_opd)
cld_opd = normalize(cld_opd, label_param, mean_std_dct)
data = np.stack([bt, refl, cld_opd], axis=2)
data = np.expand_dims(data, axis=0)
h5f.close()
nn = SRCNN()
probs = nn.run_evaluate(data, ckpt_dir)
cld_frac = probs.argmax(axis=3)
cld_opd_sres = nn.run_evaluate(data, ckpt_dir)
cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
border = int((KERNEL_SIZE - 1) / 2)
cld_opd_sres_out[border:LEN_Y - border, border:LEN_X - border] = cld_opd_sres[0, :, :]
if out_file is not None:
np.save(out_file, (cld_frac[0, :, :], bt, refl_avg, cp))
np.save(out_file, (cld_opd_sres_out, bt, refl))
else:
return cld_frac[0, :, :], bt, refl_avg, cp
return cld_opd_sres_out, bt, refl
if __name__ == "__main__":
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment