diff --git a/modules/deeplearning/cloud_opd_srcnn_viirs.py b/modules/deeplearning/cloud_opd_srcnn_viirs.py index 917009a880dd596f46a2f2427086c67c030cf884..9db4b165502867b5308c835fedc7bfcda17d708e 100644 --- a/modules/deeplearning/cloud_opd_srcnn_viirs.py +++ b/modules/deeplearning/cloud_opd_srcnn_viirs.py @@ -682,37 +682,52 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') + refl = get_grid_values_all(h5f, 'super/refl_0_65um') + refl = np.where(np.isnan(refl), 0, refl) + refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) + LEN_Y, LEN_X = refl.shape + + nn = SRCNN(LEN_Y=LEN_Y, LEN_X=LEN_X) + + refl = refl[nn.slc_y, nn.slc_x] + bt = get_grid_values_all(h5f, 'orig/temp_11_0um') bt = np.where(np.isnan(bt), 0, bt) + bt = bt[nn.slc_y_m, nn.slc_x_m] + bt = nn.upsample(bt) bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) - refl = get_grid_values_all(h5f, 'super/refl_0_65um') - refl = np.where(np.isnan(refl), 0, refl) - refl = np.expand_dims(refl, axis=0) - refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl) - refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) - refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) - refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) - refl_lo = np.squeeze(refl_lo) - refl_hi = np.squeeze(refl_hi) - refl_avg = np.squeeze(refl_avg) - - cp = get_grid_values_all(h5f, 'orig/'+label_param) - cp = np.where(np.isnan(cp), 0, cp) - - data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2) + # refl = get_grid_values_all(h5f, 'super/refl_0_65um') + # refl = np.where(np.isnan(refl), 0, refl) + # refl = np.expand_dims(refl, axis=0) + # refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl) + # refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) + # refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) + # refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) + # refl_lo = np.squeeze(refl_lo) + # refl_hi = np.squeeze(refl_hi) + # refl_avg = np.squeeze(refl_avg) + + cld_opd = get_grid_values_all(h5f, 'orig/'+label_param) + cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) + cld_opd = cld_opd[:, nn.slc_y_2, nn.slc_x_2] + cld_opd = nn.upsample(cld_opd) + cld_opd = normalize(cld_opd, label_param, mean_std_dct) + + data = np.stack([bt, refl, cld_opd], axis=2) data = np.expand_dims(data, axis=0) h5f.close() - nn = SRCNN() - probs = nn.run_evaluate(data, ckpt_dir) - cld_frac = probs.argmax(axis=3) + cld_opd_sres = nn.run_evaluate(data, ckpt_dir) + cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) + border = int((KERNEL_SIZE - 1) / 2) + cld_opd_sres_out[border:LEN_Y - border, border:LEN_X - border] = cld_opd_sres[0, :, :] if out_file is not None: - np.save(out_file, (cld_frac[0, :, :], bt, refl_avg, cp)) + np.save(out_file, (cld_opd_sres_out, bt, refl)) else: - return cld_frac[0, :, :], bt, refl_avg, cp + return cld_opd_sres_out, bt, refl if __name__ == "__main__":