Skip to content
Snippets Groups Projects
Commit d21ed0a2 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 55dc8036
Branches
No related tags found
No related merge requests found
...@@ -259,7 +259,7 @@ class SRCNN: ...@@ -259,7 +259,7 @@ class SRCNN:
self.test_label_files = None self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1 # self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 5 self.n_chans = 3
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
...@@ -302,20 +302,20 @@ class SRCNN: ...@@ -302,20 +302,20 @@ class SRCNN:
tmp = input_label[:, idx, :, :] tmp = input_label[:, idx, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp) tmp = np.where(np.isnan(tmp), 0, tmp)
lo, hi, std, avg = get_min_max_std(tmp) # lo, hi, std, avg = get_min_max_std(tmp)
lo = upsample_nearest(lo) # lo = upsample_nearest(lo)
hi = upsample_nearest(hi) # hi = upsample_nearest(hi)
avg = upsample_nearest(avg) # avg = upsample_nearest(avg)
lo = normalize(lo, param, mean_std_dct) # lo = normalize(lo, param, mean_std_dct)
hi = normalize(hi, param, mean_std_dct) # hi = normalize(hi, param, mean_std_dct)
avg = normalize(avg, param, mean_std_dct) # avg = normalize(avg, param, mean_std_dct)
#
# data_norm.append(lo[:, slc_y, slc_x])
# data_norm.append(hi[:, slc_y, slc_x])
# data_norm.append(avg[:, slc_y, slc_x])
data_norm.append(lo[:, slc_y, slc_x]) tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(hi[:, slc_y, slc_x]) data_norm.append(tmp[:, slc_y, slc_x])
data_norm.append(avg[:, slc_y, slc_x])
# tmp = normalize(tmp, param, mean_std_dct)
# data_norm.append(tmp[:, slc_y, slc_x])
# --------------------------------------------------- # ---------------------------------------------------
tmp = input_data[:, label_idx, :, :] tmp = input_data[:, label_idx, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp) tmp = np.where(np.isnan(tmp), 0, tmp)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment