diff --git a/modules/deeplearning/cloud_opd_srcnn.py b/modules/deeplearning/cloud_opd_srcnn.py index db0acc2fb84eb9b246b2f30a9c39bd313d596d2c..1eebf7d68426c84bc898d5de9f44aa02840cd42e 100644 --- a/modules/deeplearning/cloud_opd_srcnn.py +++ b/modules/deeplearning/cloud_opd_srcnn.py @@ -259,7 +259,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 5 + self.n_chans = 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -302,20 +302,20 @@ class SRCNN: tmp = input_label[:, idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp) - lo, hi, std, avg = get_min_max_std(tmp) - lo = upsample_nearest(lo) - hi = upsample_nearest(hi) - avg = upsample_nearest(avg) - lo = normalize(lo, param, mean_std_dct) - hi = normalize(hi, param, mean_std_dct) - avg = normalize(avg, param, mean_std_dct) + # lo, hi, std, avg = get_min_max_std(tmp) + # lo = upsample_nearest(lo) + # hi = upsample_nearest(hi) + # avg = upsample_nearest(avg) + # lo = normalize(lo, param, mean_std_dct) + # hi = normalize(hi, param, mean_std_dct) + # avg = normalize(avg, param, mean_std_dct) + # + # data_norm.append(lo[:, slc_y, slc_x]) + # data_norm.append(hi[:, slc_y, slc_x]) + # data_norm.append(avg[:, slc_y, slc_x]) - data_norm.append(lo[:, slc_y, slc_x]) - data_norm.append(hi[:, slc_y, slc_x]) - data_norm.append(avg[:, slc_y, slc_x]) - - # tmp = normalize(tmp, param, mean_std_dct) - # data_norm.append(tmp[:, slc_y, slc_x]) + tmp = normalize(tmp, param, mean_std_dct) + data_norm.append(tmp[:, slc_y, slc_x]) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp)