Skip to content
Snippets Groups Projects
Commit d0cf9ea5 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 887dc8b2
No related branches found
No related tags found
No related merge requests found
......@@ -30,7 +30,7 @@ NUM_EPOCHS = 60
TRACK_MOVING_AVERAGE = False
EARLY_STOP = True
NOISE_TRAINING = True
NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = True
......@@ -246,15 +246,17 @@ class SRCNN:
DO_ADD_NOISE = True
data_norm = []
# for param in data_params:
# idx = params.index(param)
# # tmp = input_data[:, idx, slc_y_2, slc_x_2]
# tmp = input_data[:, idx, slc_y, slc_x]
# tmp = normalize(tmp, param, mean_std_dct)
# if DO_ADD_NOISE:
# tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
# # tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
# data_norm.append(tmp)
for param in data_params:
idx = params.index(param)
# tmp = input_data[:, idx, slc_y, slc_x]
tmp = input_data[:, idx, :, :]
tmp = smooth_2d(tmp, sigma=1.0)
tmp = tmp[:, slc_y_2, slc_x_2]
tmp = normalize(tmp, param, mean_std_dct)
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
# tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
data_norm.append(tmp)
# # --------------------------
# param = 'refl_0_65um_nom'
# idx = params.index(param)
......@@ -420,7 +422,7 @@ class SRCNN:
activation = tf.nn.relu
momentum = 0.99
num_filters = 64
num_filters = 32
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
......@@ -437,7 +439,7 @@ class SRCNN:
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)
#conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)
#conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)
......@@ -749,11 +751,12 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
y_0, x_0, = 2432 - int(sub_y/2), 2432 - int(sub_x/2)
h5f = h5py.File(in_file, 'r')
# grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
# grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
# grd_a = grd_a[y_130, x_130]
# bt = grd_a
# grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
hr_grd_a = grd_a.copy()
hr_grd_a = hr_grd_a[y_128, x_128]
grd_a = grd_a[slc_y_2, slc_x_2]
grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
#
# grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
# grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
......@@ -773,7 +776,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
grd_c = grd_c[y_k, x_k]
# data = np.stack([grd_a, grd_b, grd_c], axis=2)
data = np.stack([grd_c], axis=2)
data = np.stack([grd_a, grd_c], axis=2)
data = np.expand_dims(data, axis=0)
nn = SRCNN()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment