From d0cf9ea52868ddf51138880d04fc6ee8d7208095 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 22 Dec 2022 11:45:22 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/srcnn_l1b_l2.py | 39 +++++++++++++++------------- 1 file changed, 21 insertions(+), 18 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index deb39a13..0c162a63 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -30,7 +30,7 @@ NUM_EPOCHS = 60 TRACK_MOVING_AVERAGE = False EARLY_STOP = True -NOISE_TRAINING = True +NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = True @@ -246,15 +246,17 @@ class SRCNN: DO_ADD_NOISE = True data_norm = [] - # for param in data_params: - # idx = params.index(param) - # # tmp = input_data[:, idx, slc_y_2, slc_x_2] - # tmp = input_data[:, idx, slc_y, slc_x] - # tmp = normalize(tmp, param, mean_std_dct) - # if DO_ADD_NOISE: - # tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - # data_norm.append(tmp) + for param in data_params: + idx = params.index(param) + # tmp = input_data[:, idx, slc_y, slc_x] + tmp = input_data[:, idx, :, :] + tmp = smooth_2d(tmp, sigma=1.0) + tmp = tmp[:, slc_y_2, slc_x_2] + tmp = normalize(tmp, param, mean_std_dct) + if DO_ADD_NOISE: + tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + data_norm.append(tmp) # # -------------------------- # param = 'refl_0_65um_nom' # idx = params.index(param) @@ -420,7 +422,7 @@ class SRCNN: activation = tf.nn.relu momentum = 0.99 - num_filters = 64 + num_filters = 32 input_2d = self.inputs[0] print('input: ', input_2d.shape) @@ -437,7 +439,7 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) + #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) @@ -749,11 +751,12 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): y_0, x_0, = 2432 - int(sub_y/2), 2432 - int(sub_x/2) h5f = h5py.File(in_file, 'r') - # grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') - # grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] - # grd_a = grd_a[y_130, x_130] - # bt = grd_a - # grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) + grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') + grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] + hr_grd_a = grd_a.copy() + hr_grd_a = hr_grd_a[y_128, x_128] + grd_a = grd_a[slc_y_2, slc_x_2] + grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) # # grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') # grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] @@ -773,7 +776,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): grd_c = grd_c[y_k, x_k] # data = np.stack([grd_a, grd_b, grd_c], axis=2) - data = np.stack([grd_c], axis=2) + data = np.stack([grd_a, grd_c], axis=2) data = np.expand_dims(data, axis=0) nn = SRCNN() -- GitLab