Skip to content
Snippets Groups Projects
Commit cd47f29b authored by tomrink's avatar tomrink
Browse files

snapshot...

parent d0565000
No related branches found
No related tags found
No related merge requests found
...@@ -35,7 +35,7 @@ EARLY_STOP = True ...@@ -35,7 +35,7 @@ EARLY_STOP = True
NOISE_TRAINING = False NOISE_TRAINING = False
NOISE_STDDEV = 0.01 NOISE_STDDEV = 0.01
DO_AUGMENT = False DO_AUGMENT = True
DO_SMOOTH = True DO_SMOOTH = True
SIGMA = 1.0 SIGMA = 1.0
...@@ -166,6 +166,7 @@ def upsample_mean(grd): ...@@ -166,6 +166,7 @@ def upsample_mean(grd):
def get_grid_cell_mean(grd_k): def get_grid_cell_mean(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
a = grd_k[:, 0::2, 0::2] a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2] b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2] c = grd_k[:, 0::2, 1::2]
...@@ -176,6 +177,7 @@ def get_grid_cell_mean(grd_k): ...@@ -176,6 +177,7 @@ def get_grid_cell_mean(grd_k):
def get_min_max_std(grd_k): def get_min_max_std(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
a = grd_k[:, 0::2, 0::2] a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2] b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2] c = grd_k[:, 0::2, 1::2]
...@@ -354,13 +356,15 @@ class SRCNN: ...@@ -354,13 +356,15 @@ class SRCNN:
tmp = input_data[:, idx, :, :] tmp = input_data[:, idx, :, :]
lo, hi, std, avg = get_min_max_std(tmp) lo, hi, std, avg = get_min_max_std(tmp)
# std = np.where(np.isnan(std), 0, std)
lo = normalize(lo, param, mean_std_dct) lo = normalize(lo, param, mean_std_dct)
hi = normalize(hi, param, mean_std_dct) hi = normalize(hi, param, mean_std_dct)
std = np.where(np.isnan(std), 0, std) avg = normalize(avg, param, mean_std_dct)
data_norm.append(lo[:, 0:66, 0:66]) data_norm.append(lo[:, 0:66, 0:66])
data_norm.append(hi[:, 0:66, 0:66]) data_norm.append(hi[:, 0:66, 0:66])
data_norm.append(std[:, 0:66, 0:66]) data_norm.append(avg[:, 0:66, 0:66])
# data_norm.append(std[:, 0:66, 0:66])
# --------------------------------------------------- # ---------------------------------------------------
tmp = input_data[:, label_idx, :, :] tmp = input_data[:, label_idx, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp) tmp = np.where(np.isnan(tmp), 0, tmp)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment